
University of California

Santa Cruz

Group Coordination Support
in Networked Multimedia Systems

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy
in

Computer Engineering
by

Hans-Peter Dommel

December 1999

The dissertation of Hans-Peter Dommel is
approved:

Prof. J. J. Garcia-Luna-Aceves

Prof. Patrick Mantey

Prof. Glen Langdon

Dean of Graduate Studies and Research

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 1999 2. REPORT TYPE

3. DATES COVERED
 00-12-1999 to 00-12-1999

4. TITLE AND SUBTITLE
Group Coordination Support in Networked Multimedia Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

179

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright c
 by

Hans-Peter Dommel

1999

iii

Contents

Abstract viii

Acknowledgments x

1 Introduction 1

1.1 Motivation . 1

1.2 Focus and Problem Formulation . 5

1.3 Objectives and Contributions . 9

1.4 Dissertation Structure . 11

2 Group Coordination 13

2.1 Conceptual Foundations . 13

2.2 Formal Framework . 17

2.2.1 Entities . 18

2.2.2 Capability Description . 35

2.2.3 Consistency . 36

2.2.4 Turn-Taking . 37

2.3 Architecture . 47

2.3.1 Paradigms . 48

2.3.2 Design Issues . 51

2.3.3 Aggregation . 54

2.4 Discussion . 57

3 Floor Control 59

3.1 Related Work . 60

3.2 Characteristics . 67

3.2.1 Related Control Paradigms . 67

3.2.2 Control Mechanisms and Policies . 69

3.2.3 Quality-of-Service Mapping . 73

3.2.4 User Perspective . 75

3.3 EÆcacy of Floor Control Protocols . 79

3.3.1 Taxonomy of Floor Control . 79

3.3.2 Comparative Analysis . 83

iv

3.4 Floor Control Protocol (FCP) . 100
3.4.1 Data Structures . 100
3.4.2 Operation . 102
3.4.3 Correctness and Fairness . 106

3.5 Hierarchical Group Coordination Protocol (HGCP) 108
3.5.1 Multisite Group Coordination . 108
3.5.2 Data Structures . 109
3.5.3 Operation . 111
3.5.4 Resilience . 116
3.5.5 Correctness and Fairness . 117

3.6 Discussion . 119

4 Ordered Multicast 121

4.1 Motivation . 121
4.2 Related Work . 122
4.3 System Model and Assumptions . 125
4.4 Taxonomy and Performance Comparison . 127

4.4.1 Geometry-Independent Protocols . 128
4.4.2 Geometry-Dependent Protocols . 131
4.4.3 Results . 133

4.5 Tree-based Ordered Multicast Protocol (TOM) 135
4.5.1 Data Structures . 137
4.5.2 Operation . 138
4.5.3 Causal and Atomic Delivery . 141
4.5.4 Resilience . 143

4.6 Discussion . 143

5 Conclusion 145

5.1 Summary and Contributions . 145
5.2 Future Work . 147

References 150

v

List of Figures

1.1 Classi�cation of collaborative activities according to synchrony vs. interactivity. 3

2.1 Con
ict resolution in terms of own vs. group concerns. 17

2.2 Session attributes. 19

2.3 Hierarchical aggregation of concurrent sessions and corresponding session graph. 23

2.4 User attributes. 24

2.5 Resource attributes. 27

2.6 Resource access scenarios: (a) Centralization, (b) Producer-Consumer, (c) Repli-
cation, (d) Distribution, (e) Multi-resource access, (f) Multi-resource consump-
tion. 30

2.7 Floor attributes. 32

2.8 Generic
oor control protocol. 33

2.9 (a) Concurrent, coupled
oors, and (b) backchannels. 35

2.10 Turn-taking control and activity
ow abstraction. 44

2.11 Conceptual model for turn structure. 45

2.12 Average turn distribution. 47

2.13 Coordination con�gurations: (a) Centralized; (b) Hybrid; (c) Distributed. . . . 49

2.14 Group coordination architecture. 53

2.15 Snapshot of group coordination among multicast groups MG1 - MG3 and corre-
sponding dissemination tree. 55

2.16 Message cost for coordination with unicast, multicast and aggregated multicast. 57

3.1 Snapshot of CSpray - collaborative visualization of remote sensing data. The
spray can icon is used by a user to grab the
oor for a speci�c rendering mode
(from [169]). 65

3.2 Snapshot of Ccam - collaborative camera control through the World Wide Web.
Clicking on elements in the navigation rose grants a user the
oor, when available,
for the duration of the camera movement. 66

3.3 QoS mapping with
oor control input. 74

3.4 Taxonomy of
oor control. 80

3.5 Call structure in SFC. 82

3.6 Coordination topologies. 83

vi

3.7 Turn taking periods for a resource and three stations. 86
3.8 Prototypical RSI timeline. 88
3.9 Prototypical RSF timeline. 89
3.10 Prototypical RAS timeline. 90
3.11 Prototypical STD timeline. 92
3.12 Prototypical STR timeline. 94
3.13 Prototypical STT timeline. 96
3.14 EÆcacy with multicast support for low network latency. 98
3.15 EÆcacy with multicast support for high network latency. 99
3.16 FCP protocol state diagram. 104
3.17 Packet header �elds for coordination directives (CDs). 111
3.18 Sample HGCP scenario. 114

4.1 Taxonomy of ordered multicast solutions. 127
4.2 Average message cost with multicast. 134
4.3 Network protocol stack with ordered multicast. 136
4.4 Ordered multicast on acknowledgment tree using address labels (node labels are

only depicted if nodes are involved in transmission.) 139
4.5 TOM procedures for ordered multicast from node i to other nodes and for pro-

cessing received messages from other nodes for ordered local delivery. 142

vii

List of Tables

2.1 Resource types and handling characteristics. 29

3.1 Select QoS characteristics for various media types. 74
3.2 Floor control API primitives and functional semantics. 79
3.3 Analysis parameters. 85
3.4 EÆcacy of
oor control protocols with multicast support. 97
3.5 Floor control packet structure. 101

4.1 Analysis parameters. 128
4.2 Average processing overhead X and multicast message cost M 133

Group Coordination Support

in Networked Multimedia Systems

Hans-Peter Dommel

Abstract

Advances in computer hardware and networking technology have incited the deploy-

ment of large-scale group-oriented applications for delivery or interactive development of

multimedia content in the Internet. There is a growing number of protocols and tech-

niques for group communication and membership services in the IP-multicast framework,

however, group coordination support for telecollaborative tasks such as videoconferencing

or distributed interactive simulation has received little attention. In this dissertation, we

address network control and coordination functions to orchestrate synchronous multime-

dia groupwork, establishing a sharing discipline on multimedia resources and guaranteeing

consistency of distributed activities with ordered multicasting.

We introduce a formal framework for group coordination and a turn-taking abstraction

useful for evaluating coordination protocols. Elemental design choices for group coordina-

tion architectures and the concept of aggregated processing of coordination information are

discussed.

A
oor control methodology is presented to implement concurrency control for interac-

tive, rather than transactive cooperation among users. Floors are dynamically generated,

ephemeral permissions for using discrete or continuous media such as GUI objects, audio and

video channels, or remote instruments. Floor control regulates user interaction and band-

width consumption by throttling sources in sending information
ows according to receiver

interest. A novel taxonomy of
oor control protocols and a comparative throughput analysis

show that large-scale group coordination is most e�ectively supported by hierarchical host

organization. Two new protocols are presented to provide
oor control in fully-connected

networks and in multicast trees, where the addition of group-relative address information

permits more sophisticated coordination among end-nodes.

Finally, we discuss the problem of out-of-sequence delivery in multicasting. A new

taxonomy for ordered multicasting protocols and a comparison of message complexities

elicit the bene�ts of aggregated, ordered multicasting. We present a novel multicast ordering

protocol for more eÆcient total-order delivery of messages from multiple sources to multiple,

potentially overlapping receiver groups in multicast trees. Previous solutions require the

computation of a separate propagation graph to structure ordering relations and incur high

cost, if sources change frequently. Our proposed mechanism is more
exible and eÆcient,

because it relays ordering information in accordance with the hierarchical organization of

end-hosts maintained by an underlying tree-based reliable multicast protocol.

x

Acknowledgments

I wish to thank my advisor and sage, Professor J.J. Garcia-Luna-Aceves, with all my heart

for believing in me and for the years of positive-spirited guidance, patience, and humor. It

was a great honor and joy to be his student, and to learn and grow under his wings. His

doors have always been open and his discipline for research and gentle leadership are a true

inspiration. I cannot imagine a better \doctoral father" and role model to be guided by in

academic life and I look forward to future collaboration. Heartfelt appreciation goes also

to JJ's family for the warm welcoming and caring.

I am grateful to Professors Patrick Mantey and Glen Langdon for serving on my thesis

committee and for their interest and time. In particular, I appreciate Pat Mantey's detailed

review and insightful critique of the thesis and I look forward to future joint research

projects. Thanks to the \Coco Group" for the years of togetherness, and to the faculty

and sta� at the UCSC Computer Science and Engineering department for their help and

sharing. In particular, I thank Lynne Sheehan for helping me stay, and Professor Manfred

Warmuth for his \focus!" encouragements. Finally, I wish to express my gratitude to all

my teachers along the way for their legacy and gift of inspiration.

The text of this dissertation includes material that has been previously published [51,

52, 53, 54, 55, 56, 57, 58, 59, 60, 61]. I have received the Best Student Paper Award from

the IEEE Systems, Man and Cybernetics Society at SMC'98 for paper [57]. The co-author

listed in these publications, Professor J. J. Garcia-Luna-Aceves, has directed and supervised

the research which forms the basis for the dissertation.

The �nancial and computing facility support from UCSC, ONR grant N-00014-92-J-

1807, DARPA grants F19628-96-C-0038 and DAAB07-97-C-D607, and in particular from

the Fulbright Program for the initial scholarship is gratefully acknowledged.

xi

Personal Acknowledgments

I will always be grateful for the encouragement and true friendship that Velma Vel�azquez

has provided me with during graduate school, in good and in challenging times. Roya

Nassiri-Rahimi, Priya Ganguli, Paul Scheidt, Peter Cornelius, Manfred Warmuth, Barbara

Warsavage, Barbara McCain, Jade Rice, Sheraz Omarazai, Jody Ho, Gina Engracia, Glenda

Benevides, Jodi Rieger, Alexandre Brandweijn, Jane Mio, Lisa Swehla, Alpha Schramm,

Qin Shen, the Hostetter family, Annette Sha�, Vanessa Fontana, Linde Martin, and Habib

Krit have been dear friends and supporters in di�erent times on the way. I am very thankful

to Senseis Linda Holiday, Glen Kimoto, Jamie Zimron, Martha Jordan, Dov Nadel, and the

community of North Bay Aikido, fostering my body, mind, and spirit with Ki and energizing

\keiko". I also want to express my gratitude to my friends from the \Quatschtafel", the

Board of Directors and sta� of the Santa Cruz Hostel Society, and to my housemates, in

particular Andrea M�achler and Kathleen McDill, for their caring and gift of a home away

from home. Tom Klemzak, Troy and Jasun Tipton have been inspiring friends in music.

Many thanks also to my faithful family and friends far away, in particular to my big

brother Klaus, my wonderful cousin Isa Ste�en in Switzerland, my aunt Renate Stemmer,

Christina Maass, Daniela Guicking, Lubi Zmijanek, Georgina and Koni Sonnabend, Lydia

Grabowiecki, Doris Haslbeck, Bernd Scharrer, Christine Werber, Regine Drake-Nold, and

Corinna Thiemann in Germany, and Riaz Ezmailzadeh and Masami Ueda in Japan.

A sincere thanks to all you important people in my life, mentioned and unmentioned,

for your open hearts, spirits, and teachings, and the moments of sharing and growth that

brought us together. You know who you are!

I have fond memories of my father Josef Dommel and my uncle Hans Stemmer for letting

me be and follow my aspirations. Finally, and most importantly, I wish to thank my mother

for all the years of unconditional love, patience, and support, especially after I set o� for

the New World in pursuit of my own interests. I dedicate this work to her.

Santa Cruz, December 1999,

Hans-Peter Dommel

xii

NetWorking Man

I get up at seven, yeah
And I go to work at nine
I got no time for livin'
'Caus I'm networkin' all the time
It gives me wings and makes me feel nice
Trees and sparrows in front of my eyes

It seems to me I could life my creed
A lot better if I reserve what I need
I guess that's why they call me
They call me the networking man
I don't wear just one, but multi-casts
I know I'll �nd home on many paths

Bridges and links they surround me for good
I hook up near and far, free-spirit hub
Ton's of new ideas, never get tired
I'm loosely coupled, but always stay wired
Work in the net, that's what I like
Everythin's smooth, never a spike

They call me the networking man
I guess that's what I am
Secure is my home, Sun shines inside
I'm routin'n switchin' all the time
I'm active and linked, meshed like a star
No time to camp out, distance too far

Core of my life, always on quest
Virtual rendezvous, no time for rest
My digital life, it's acknowledging me
Through open gateways my spirit roams free
Syncing and caching, I'm on my way
A spread spectrum of wherever I stay

I get home di�used at ten o'clock
Network's down, evenin' shock
Like a saint I turn on the switch
Wireless box, guaranteed glitch
Caught in a web, always seem to be wonderin'
How to connect and not be asunder...

Well they call me the networking man

I guess that's what I am

(free after "Working Man" by Rush)

1

Chapter 1

Introduction

1.1 Motivation

The proliferation of Internet services in recent years, in particular the World Wide Web,

indicates the high demand for sharing of information through computer networks. A wider

distribution of the work force, in form of telecommuting and ubiquitous computing [231],

the advent of networked multimedia, and less expensive technology have shifted telecol-

laboration into the spotlight of mainstream computing. Telecollaboration comes in many

faces, such as email, instant messaging, chatting, simultaneous but independent work on

shared documents, and real-time interaction on the same media or resources, quali�ed by

the increasing degree of mutual awareness and the ability for instant information exchange

and manipulation. Synchronous telecollaboration enables people in di�erent geographic

locations to share and jointly manipulate multimedia information in real-time and at vari-

ous levels of granularity, bridging time and space. This aspect stands in contrast to legacy

client-server applications such as Internet radio broadcast or video-on-demand, and to asyn-

chronous, document-centric collaboration tools like email, instant messaging, or chat rooms.

In this thesis, we focus on network support for synchronous multimedia groupwork for the

Internet and large user groups. Cerf et al. [34] pointed out the importance of transatlantic

collaboration infrastructures in a memorandum in 1991.

Shared resources in the telecollaborative workspace are, for example, video and audio

channels, remotely controlled devices such as cameras or surgical instruments, objects in the

2

graphical user interface, or components of a document. Application areas are, for example,

conferencing [197], collaborative virtual environments [40], distance learning [152], remote

visualization [169], distributed interactive simulations (DIS) [70], collaboratories [127], dis-

tributed real-time gaming environments [49], and telemedicine [125, 171]. Telecollaboration

faces two paradoxes. First, it is to better individual and joint productivity among users,

and to provide innovative ways for remote communication; however, multimedia-enabled

groupwork tools are often clumsily integrated and diÆcult to use. Second, while users

aspire cooperation, they may knowingly or unknowingly contend for shared resources in

synchronous work, due to technological or sociological reasons [126].

In contrast to stand-alone applications, where the user interacts only with a computer

system, engineering of telecollaborative systems is much more complex because it involves

user, network, and host-related issues, such as human factors, Quality-of-Service, and het-

erogeneous platforms for applications. The end-to-end interaction manifests itself between

users, not end hosts, and users expect ideally a telecollaboration environment providing a

quality of interaction close to a face-to-face meeting. Limitations in the availability and

accessibility of resources in the shared workspace of a telecollaborative system create con-

tention, competition, and con
ict among users and make it necessary to deploy coordination

mechanisms to reach consensus on how to jointly and e�ectively use the resources. Con
icts

stalling the work
ow may occur before and during resource allocation to users, as well as

during actual usage. Telecollaborative services build on the provision of group coordina-

tion mechanisms. These manage access, manipulation, distribution and presentation issues

between users and shared resources. Such coordination mechanisms are necessary to allow

users to achieve individual goals in the context of group-centered remote interaction, when

telepresence [22] substitutes for physical presence.

Software to support collaborative work, generally termed groupware [67], or workgroup

computing software, referred initially only to systems supporting the asynchronous exchange

of text-documents, but more recent connotations include multimedia-based, synchronous

interaction. Groupware development is linked to studies on computer-mediated communi-

3

cation [160], and the discipline that motivates and validates groupware design, computer-

supported cooperative work (CSCW) [183]. Tool design for CSCW must meet quantitative

and qualitative constraints both from an engineering and human factors perspective. Fig-

ure 1.1 shows a four-sector classi�cation of di�erent groupware paradigms known to date,

according to the level of interactivity and synchrony provided. Interactivity indicates the

degree of sharing of resources, unilateral or bilateral, in a groupware paradigm, and syn-

chrony indicates whether resources are shared at the same or di�erent times and whether

instant response is expected between participants. Our classi�cation stands in contrast to

prior typologies discerning between synchrony and explicit or implicit interaction [183], or

between time, place and predictability [95].

Interactivity

Synchrony

Non−interactive/
 transactive

Highly interactive

A
sy

nc
hr

on
ou

s
S

yn
ch

ro
no

us
 /

in
st

an
ta

ne
ou

s

11 22
33 44

Databases

 Advanced
Databases

Access Control

Version
Control

 Role−based
Access Control

Application SharingEmail

Workflow

Usenet

Instant Messaging

Videoconferencing
IRC

Groupware

World Wide Web

Telecollaboration

Figure 1.1: Classi�cation of collaborative activities according to synchrony vs. interactivity.

Sector 1 targets non-interactive or transactive applications, whose task execution is

asynchronous. This class is represented by database applications, which allow for multiparty

access to shared records in a request-response scheme regulated by concurrency control. The

objective of concurrency control [24] is to prevent con
icts on simultaneous read-write and

write-write operations from several points of access to a shared database record. Users

4

have no insight into the actual information structure of database records and can only

witness the outcome of transactions. While advanced database applications [20] support

long-term interactivity on the same records, they also do not support end-user interactivity.

Work
ow systems [98], placed on the boundary between Sectors 1 and 3, implement typically

asynchronous coordination and sharing mechanisms on task components belonging to a

process
ow among work
ow participants. The goal is to administer task execution patterns

in larger organizations, which can be prede�ned or generated ad hoc. Usenet access is

database-driven and belongs to this sector, as well.

Sector 2, depicting synchronous, noninteractive systems, is represented by �le-oriented

control mechanisms such as access control [68, 202], role-based access control [193], or ver-

sion control [123]. The shared resources are typically limited to discrete records, networked

in �le systems of local scope. Access is implemented in permission matrices based on a

simple role distinction between the �le owner, the group the owner belongs to, and all other

users in the system. Access control lists [130] can additionally re�ne the security in concur-

rent �le access, however, these mechanisms do not cater to frequently switching sources or

continuous media streams, as we encounter them in networked multimedia systems.

Sector 3 depicts the predominant paradigms of current workgroup computing, including

email, World Wide Web (WWW) access (via the Hypertext Transfer Protocol, or serving

as a wrapper for other transport protocols), chat tools such as the Internet Relay Chat

(IRC) [164] and their game-oriented extensions into \Multi-User Dungeons" (MUDs) or

\Object-Oriented MUDs" (MOOs), and traditional groupware such as Lotus Notes or

Novell Groupwise. Multimedia support has been added to such systems in recent years,

enabling users to interact via voice snippets, images, or short movies in speci�c digital

video formats. User interaction is typically a request-reply pattern mediated by a client-

server architecture. A more recent paradigm of Internet group communication is instant

messaging (IM), which promotes highly interactive, lightweight exchange of information

based on a presence protocol [194]. Users can detect at login time which other \friends"

are online, and exchange small multimedia documents with near-instant noti�cation and a

5

functionality similar to chat tools. Both WWW and IM approach Sector 4, however, the

majority of tools are a far cry from synchronous multimedia collaboration functionality.

This dissertation concentrates on Sector 4, comprising tools for synchronous and in-

teractive telecollaboration, videoconferencing, and application sharing. We target network

support for real-time multiparty and multimedia interaction in packet-switched networks.

Our intention is to improve on the state-of-the-art in network-centric and multimedia-

oriented group collaboration. Within this category, we can distinguish between computer-

supported realworld meeting spaces, where users are collocated and exchange information

aided by computers, vs. virtual collaboration spaces, where users communicate and share

information among geographically distributed workstations. We concentrate on the sec-

ond paradigm, the distributed computer-mediated group collaboration with multimedia

support. However, some of the methods put forward in this thesis are also applicable in

computer-supported meeting spaces. Our working context is networked multimedia systems,

consisting of multimedia-enabled hosts in a computer network exchanging media streams

of various types.

1.2 Focus and Problem Formulation

The focus of this thesis is novel mechanisms for network-supported group coordination.

Group coordination services support distributed hosts in coordinating their joint activities,

to prevent or resolve resource contention, con
ict and inconsistencies in the synchronous

sharing of resources. Group coordination can be dissected in separate, yet related areas:

the distributed access to shared resources in a networked multimedia system, which we also

refer to as
oor control [54], the ordered and reliable message dissemination [61], security in

collaborative information exchange [88], and multisite synchronization [139] of distributed

interaction. Group coordination protocols, which embrace multicasting and consider net-

work conditions in the coordination processes between hosts, complement e�orts on group

membership known from distributed systems and multicasting as an eÆcient message dis-

6

semination mechanism for group communication. Such protocols may be implemented by

man or machine, and in social or computer networking contexts.

We de�ne coordination as an interactive scheduling process between two or more users

forming a group to achieve joint work goals. Coordination correlates with cooperation,

which we understand as the joint acting of individuals for a mutual bene�t - in our con-

text the mutual sharing of information for data mining or other forms of data exchange.

Coordination and cooperation among users in networked multimedia systems support the

process of multimedia collaboration [181], which is the actual act of users working together

online. A system facilitating remote group collaboration with multimedia support is referred

to as a Collaborative Multimedia Environment (CME). In contrast to earlier text-centered

groupware systems, CMEs process multimodal resources, that is discrete and continuous

data such as text, voice, video, music, sensor data from remote instruments, images and

graphics.

A group is understood as an association of users with a common interest and for a com-

mon bene�t. The timeframe within which a group meets in a distributed fashion is called

a session, de�ning the modalities of information exchange between users. For example, a

lecture session is comprised of a teacher and an audience consisting of students, where the

lecture content is transmitted with a shared whiteboard, voice or video, and the teacher is

primarily exercising control over these media. We take a process-oriented view on group

coordination, meaning the design and analysis of distributed algorithms and protocols fa-

cilitating network-supported synchronous interaction, rather than looking at content and

sharing functionality of speci�c coordination tools. Scalability of group coordination mech-

anisms is relevant in the light of observations that various MBone sessions [76] or DIS [70]

can involve thousands of users and shared entities.

Such large-scale collaboration with multiple parties and mixed media over long distances

raises complex coordination and cooperation issues. Currently, no comprehensive frame-

work exists for characterizing the process of synchronous multimedia-based cooperation.

Consequently, we experience a lack of methodology in the development and deployment of

7

coordination protocols for CMEs. A central point in understanding and successfully imple-

menting CMEs is telepresence and support for mutual awareness [62, 133] among users. The

challenge lies in the integration of usability issues concerning individual vs. group interests,

heterogeneous operating systems and applications at end-hosts, and networking issues such

as eÆcient session management and data dissemination.

From a user's perspective, computer-mediated remote interaction has several drawbacks

in comparison to face-to-face meetings, because nonverbal communication across CME can-

not be conveyed and perceived with the same subtlety as in face-to-face meetings due to

limited image resolution, transmission delays, speaker identi�cation and engagement prob-

lems. Gaze, as an important part in face-to-face communication, is estimated to be involved

in over 60% of communication [147], serving as
ow regulation, medium for communicational

and emotional feedback, and re
ecting the status of relationships between conversation par-

ticipants. Gestures reportedly account for 35% of all interactions in order to enact ideas,

signal turn-taking, or reference to objects [106]. Translating such subtle visual cues in

face-to-face meetings onto the desktop metaphor, using network links as communication

\bottlenecks", requires hence substitutive tools, for example cursors or icons to represent

gestures, signals, and deixis. Studies on user interaction [114, 163] with a proprietary video

conferencing system elicited some of the limits of video as a communication medium. An-

other key constraint in the e�ectiveness of groupwork with window-based human-computer

interfaces is the limited screen space, despite improved screen and window management

technology. Information from remote workspaces may be stripped from its source context

and condensed into the shared workspace, causing \window thrashing" [120]. Users may

experience cognitive overload, or become overinvolved in coordinating activities with each

other to avoid con
ict and hence get sidetracked from task completion. Consequently, telep-

resence becomes a poor substitute for physical presence, and limits the mutual awareness

between users. Collaboration partners may disengage from groupwork, due to feelings of

depersonalization, frustration or lack of trust, causing a halt or breakdown of collaboration

e�orts. Lack of coordination mechanisms compensating for such de�ciencies, aside from

8

earlier technological limitations, may be one of the causes why collaborative applications

have not been deployed successfully for large-scale group work among many users. To date

it is an open problem, how online collaboration can be improved with such mechanisms,

harnessing structured communication and compensating for lack of personal presence in

synchronous groupwork, to foster synergy rather than obstructing the natural
ow of user

interaction [161].

From a distributed systems perspective, transaction processing [89] between users and a

database server is based on the Commitment, Concurrency, and Recovery (CCR) infrastruc-

ture de�ned by ISO/IEC 10026, entailing atomicity, consistency, isolation, and durability

(ACID) properties. Atomicity means that, to an outside observer, either all of the opera-

tions are completed or none of them is executed. Consistency warrants that the operations

are performed correctly with respect to the application semantics. The isolation property

means that any partial results of the operations composing the atomic action are not accessi-

ble before the completion of the atomic action. Finally, durability means that a transaction

must endure a communication or an application failure. We observe that currently no such

standard exists for building and deploying interaction management protocols for computer-

supported cooperative work, independent of such middleware architectures as CORBA [153].

A group coordination architecture may provide a more lightweight repository for crafting

applications to feature collaborative services transparently.

From a networking perspective, much research has been invested in recent years in

designing more e�ective group communication mechanisms; however, without much con-

sideration of end-user interactivity. While multicast [47] is a necessity for e�ective group

communication (designed to have a source send a packet only once to the network interface,

and multicast routers replicating the packet on its transmission path to multiple receivers),

only few collaborative tools build on such eÆcient group communication to date. In addi-

tion, with IP multicast, no guarantees are given for reliable or order-preserving delivery of

packets, and a message is delivered on a best-e�ort basis to all members of a multicast group.

These shortcomings have spurred much research on multicast routing, reliable multicast,

9

Quality-of-Service, streaming protocols, or resource reservation. While group membership

is tackled by such protocols as IGMP (Internet Group Management) [74] or session direc-

tory services such as SDP [102], and multipoint dissemination is handled by multicasting

routing and reliable multicast protocols [135] to achieve eÆcient, reliable packet dissemina-

tion, group coordination support for interactive hosts has received only scattered attention

in the research literature to date. We surmise that a formal and methodological framework

for group coordination, providing an integrated view on dissemination, joint access and

presentation issues from both a user and network perspective, is still lacking.

1.3 Objectives and Contributions

Our objective is to de�ne a framework and architecture for group coordination, focusing on

oor control and ordered multicast. The rationale behind the work presented in this thesis is

that many networked multimedia applications exhibit similar media semantics and coordi-

nation needs, justifying the deployment of such services as middleware at a sub-application

layer. Our goal is to achieve a better understanding of the group coordination problem,

as a component of Internet multimedia collaboration, bridging the gap between CSCW

and networking research. We envision a new generation of CME based on improved group

coordination protocols, facilitating multipoint, multiparty, multichannel, and multimedia

communication from small to very large groups up to an Internet scope. In such systems,

groups and individuals can selectively, securely, and eÆciently cocreate and disseminate

information with improved telepresence and mutual awareness. In that vein, the predomi-

nant user interface paradigm of WYSIWIS (What You See Is What I See), geared toward

standalone work, has been relaxed [211] to account for di�erences in presentation of local

and remote content. We refer to this paradigm as WYSIWISH (What You See Is What

I SHare), indicating selective, �ne-grained sharing of information within speci�c multicast

groups and sessions.

In contrast to the majority of commercial and experimental CME existing to date,

we look at collaboration as an inherently distributed process, where session coordination

10

and control are enacted collectively by participating hosts, rather than �xing such roles in

centralized servers. We presents a formal model of group coordination and collaboration

in networked multimedia systems and propose a turn-taking model, known from applied

linguistics, to be used for analyzing the e�ectiveness of
oor control protocols. With this

model we are able to merge social- and machine-driven regulation of interaction in an

integrated treatment of resource sharing. A comprehensive view on the components of

group coordination motivates the work on
oor control and ordered multicasting.

Floor control is the orchestration among users in multicast groups partaking in telecol-

laboration, deciding on who may access and act on a mutually exclusive resource at a given

time. This notion of
oor control for CME is a generalization of the established meaning of

who may speak in an assembly. We provide a fresh view on
oor control, in terms of a novel

taxonomy and a comparative throughput analysis of the various paradigms existing to date,

using a turntaking model known from psycholinguistics and insights from mutual exclusion,

channel access, and multicasting. Our work on the network aspects of
oor control di�ers

from various other e�orts in CSCW focusing more on social and human factors issues. In

contrast to the many conceptual descriptions of
oor control protocols in the literature, we

provide speci�cations and veri�cations of two novel
oor control mechanisms. We discuss

design choices in implementing
oor control protocols, integrating user concerns such as

interfaces and interaction stages, and network concerns, such as locus and policies in the

deployment of control, as well as Quality-of-Service.

Ordered end-to-end multicast guarantees that packet
ows from di�erent sources are

received by all hosts in a receiver set in the same order, ensuring the collective integrity

and consistency of distributed operations. This property is relevant for distributed appli-

cations depending on a consistent systemic view on collective activities, events and object

updates at all participating sites, as it is the case for a shared whiteboard as an example

for a distributed multiparty collaboration tool, or DIS systems. Few earlier research e�orts

on reliable multicast have investigated the ordering issue, possibly due to the end-to-end

debate [39]. This debate revolves around the argument that ordering services should be

11

deployed at the application layer because lower layers lack knowledge of application-speci�c

ordering semantics. We propose a novel taxonomy on reliable, ordered multicast protocols

integrating known approaches from fault-tolerant systems and current networking research,

and present a comparative performance analysis. It shows that our solution for tree-based

ordering, which aggregates and orders messages en route from sources to receivers, is more

eÆcient and less costly to deploy than previous solutions, in particular, when operating in

conjunction with an underlying tree-based, reliable multicast protocol.

1.4 Dissertation Structure

This remainder of this dissertation is organized as follows:

Chapter 2 discusses principles of group coordination [51, 58], including a formal model

for turntaking and a capability description to specify coordination sessions, providing

a foundation for the chapters on
oor control and ordered, reliable multicast.

Chapter 3 discusses concepts and related work [52, 53, 54, 55] on
oor control, looking

at end-user issues such as the interfaces and interaction stages, and Quality-of-Service

tuning. A novel taxonomy and comparative performance analysis of known
oor con-

trol protocol types [56, 57, 58] is presented, followed by speci�cations of two new

oor control protocols. The Floor Control Protocol (FCP) [55] operates in networks

without assuming a speci�c end-host connectivity, with the node controlling the
oor

roving among session members for reasons of eÆciency and resilience. We motivate

then the idea of hierarchical group coordination by discussing a multisite scheme op-

erating on a tree topology [59, 60] in conjunction with tree-based reliable multicast.

The Hierarchical Group Coordination Protocol (HGCP) [57, 58] implements this idea

by performing
oor control on top of a tree-based reliable multicast protocol for eÆ-

cient aggregation and forwarding of control information among hosts, just as reliable

multicasting uses the tree to eÆciently relay error-recovery control messages without

overburdening sources.

12

Chapter 4 investigates group coordination at the transport level, by addressing the prob-

lem of message ordering in reliable multicast communication. We �rst review related

work and present a novel taxonomy for existing broadcast and multicast ordering solu-

tions [61]. We elicit the advantages of staggered ordering of messages on the multicast

delivery paths from sources to receivers, and present a speci�cation of the Tree-based

Ordered Multicast protocol (TOM), which incrementally orders messages from various

sources on their paths to common receiver sets. In TOM, receiver groups may over-

lap and remain anonymous to senders. In contrast to previous solutions, no separate

graph must be maintained for propagating ordering information, because TOM is de-

signed to run on top of a tree-based reliable multicast protocol, using the underlying

tree structure to communicate ordering information among sources, ordering nodes,

and the receiver set.

Chapter 5 presents a summary of the contributions put forward in this dissertation and

outlines a roadmap for future work.

13

Chapter 2

Group Coordination

Our objective for this chapter is to provide a comprehensive framework for group coordi-

nation from a modeling and architectural perspective, looking at the components of group

coordination processes from various angles to better understand how it can be exploited for

more eÆcient information routing and task execution. Group coordination in distributed

systems and multimedia systems has many faces manifested in a variety of user interfaces

and network protocols. To date, no standardized methodology for engineering group coor-

dination protocols exists. We discuss various views on coordination, including insights from

psychology and linguistics, to frame our technically oriented views. We discuss a formal

model to characterize group cooperation environments and propose a turntaking model to

characterize user interactions across computer networks. A group coordination architecture

is motivated as a foundation for discussing two of its components,
oor control and ordered

multicast, in subsequent chapters.

2.1 Conceptual Foundations

With the advent of networked desktop computers, new opportunities arise to collaboratively

utilize distributed information systems. Information processing is no longer limited to a sin-

gular, �nite time-sharing domain. Client-server architectures have been a catalyst for new

enabling technologies such as cluster computing, where groups of cooperating processors

communicate seamlessly with each other. Computer-supported cooperative work, speci�-

cally multimedia telecollaboration, promises to deliver more powerful ways of cooperation

14

and coordination, compared to �rst-generation rudimentary examples of groupware such as

email, data exchange, or online coordination of calendars.

Ellis and Rein [67] de�ne groupware as \computer based systems that support two or

more users engaged in common tasks, providing an interface to a shared environment". In

their coordination theory framework, Malone and Crowston [145] de�ne coordination as

the \act of managing interdependencies between activities performed to achieve a goal",

looking at components of actors (people) and agents (computerized procedures), identify-

ing workgoals, mapping goals to activities, and managing interdependencies among actors

and activities. They distinguish between generic interdependencies, for instance sequenced

or simultaneous actions on shared resources, and domain-speci�c interdependencies, e.g.,

speci�c data elements that must be passed between team members to achieve successful

groupwork. Schmidt and Simone [195] present an empirical characterization of computa-

tional coordination mechanisms useful as general blueprint for the design of coordination

protocols, proposing for instance the construction of a mechanism such that \actors are

able to control its execution and make local and temporary modi�cations of its behavior to

cope with unforeseen contingencies".

Axelrod [17] investigated cooperation from a game-theoretic perspective, speci�cally,

how the tradeo� between individual greed and good a�ects coordinative strategies in groups,

assuming rational behavior. This problem is also known as the social dilemma. Focusing

on \tit-for-tat" games, interactions are interpreted as pairwise alternations of moves with

speci�c payo� values. The pay-o� structure of the interaction determines the game motive.

For two participants A and B, the payo� structure for choosing two actions i and j is

P = Aij + Bij . If P = 0, then the interaction is called a zero-sum game, and interactions

with P 6= 0 are called cooperative or mixed-motive games.

A related approach uses economic models to tackle resource allocation in computer sys-

tems from a market-oriented perspective [75]. A cost function is assigned to cooperative

activities, individual negotiations, deals, and strategies. An activity between two subjects

is pareto-optimal if it is not possible to improve the utility for one subject without lowering

15

the utility of the other subject. A strategy to determine the progress of activities is said

to be in equilibrium if no party has an incentive to diverge from that strategy in order to

ful�ll individual and group tasks. Multiple equilibria are possible and two strategies S and

T are said to be in Nash-equilibrium [154] if one party cannot do better other than using

T , when the other party uses S, i.e., the product of individual utility values is maximized.

However, it is not simple to assess global utility values, and choosing one of several possible

equilibrium points may guarantee relative fairness but restricts the space of possible agree-

ment states, under the assumption that all subjects employ the same utility measure and

do not cheat. ContractNet [208] was an early market-based protocol approach towards

distributed task-completion, employing a bidding scheme among managing and contracting

nodes. Shenker [204] argues that applying a fair-share service discipline at network switches

models uncooperative
ow control satisfying individual users' sel�shness more realistically

than traditional disciplines, which presuppose cooperation such as First-Come-First-Served

among users.

Cooperation has been a major research focus in distributed arti�cial intelligence. Lux et

al. [142] de�ne a language of cooperation between humans and agents to assess how humans

and computational agents estimate payo� in resource usage and relinquishment to optimize

their strategies. Rosenschein and Zlotkin [190] developed a framework on negotiating pro-

tocols among agents, where utility metrics de�ne strategies and outcomes in cooperative

resource allocation. Decker [46], understanding coordination as the \act of managing inter-

dependencies between activities", dissects coordination into speci�cation of shared goals,

solution planning, and task scheduling, starting with signals for attention, acceptance or

refusal of a connection, information transfer, acknowledgment, and teardown. Blackboard

architectures [105] have been extensively studied in arti�cial intelligence as a mechanism

for sharing information among expert system modules for purposes such as multiple-task

planning.

Holt [109] discusses a coordination language based on Petri nets, as an element in a

larger theoretical framework referred to as coordination mechanics, to establish relationships

16

between tasks and products. Winograd [234] presents an analysis of group action based on

speech act theory and discuss the Coordinator tool to support users in keeping track of

requests and commitments to each other.

Rabin [177] de�nes choice coordination as the problem of designing a wait-free protocol

for n concurrent processes causing all correct processes to agree on choosing one out of k

possible alternatives. Communication is performed via registers associated with choices,

and the question is: how can choice coordination be best solved deterministically. If a

small probability of failure is acceptable, a protocol on a small alphabet can solve the

problem; however, a \perfect" protocol is very expensive. Joung and Smolka [119] proposed

a taxonomy of languages describing multiparty interaction, discerning between interactions

with �xed vs. variable participants, conjunctive vs. disjunctive parallelism in the execution

of interactions, synchronous vs. asynchronous task execution, and biparty vs. multiparty

scenarios. For synchronous systems, multiparty interaction with disjunctive parallelism is

accordingly NP-complete, and biparty interaction is solvable in polynomial time, when using

conjunctive and disjunctive parallelism in isolation.

Coordination can be manifested explicitly, e.g., through signals like acknowledgments,

or implicit through interpretation of the behavior and responses of partners. The process of

coordinating activities can hence be transparent or tangible to applications. Coordination

revolves around resource allocation in terms of scheduling and availability. Allocating a

resource at time t may create contingencies for resources and users at time t+ 1. Coordi-

native stages are therefore often non-separable. Messaging may be based on ad hoc input

or use a prede�ned vocabulary. Partners may be located at the same or di�erent places,

and coordinate at the same or di�erent times, i.e., coordination processes may operate syn-

chronously or asynchronously in the relative timing of partners. Participants at any instant

are either active initiators, or passive receivers. Coordination
ow may be unicast and

either half-duplex or full-duplex, or multi-way, using broadcast and �ltering, or multicast.

Coordination is intertwined with con
ict [111], and its prediction, avoidance, or res-

olution. Con
ict can arise before the allocation of shared resources, implying contention

17

Figure 2.1: Con
ict resolution in terms of own vs. group concerns.

or race conditions, or during and after resource allocation, creating collisions, congestion,

inconsistencies or information loss. Con
icts are resolved by blocking or queuing contend-

ing processes or by aborting them. A speci�c con
ict prevention or resolution scheme may

be unfair in that it bene�ts speci�c users and neglects others. Figure 2.1 [64] depicts the

strategies of con
ict resolution in the light of personal vs. group interests. We can partition

the set of N users into two subsets, cooperating and con
icting users fuig = fujg[fukg, for
i, j, k = 1; : : : ; N and j 6= k. The objective of group coordination is to minimize the con
ict

set, e.g., by establishing e�ective turn-taking protocols.

2.2 Formal Framework

In this section, we present a formal view on entities and actions re�ning earlier e�orts [180,

181] on the de�nition of coordination and control processes in collaborative multimedia

systems. Candan et al. [32] focus on algorithms for collaborative composition and transmis-

sion of media objects under given quality constraints, and their presentation in collaborative

group-sessions. We picture a computer network as a graph with nodes (stations, hosts) V

sending messages across links (channels) E � V � V . A connection is a unidirectional or

bidirectional transmission link from a sender node to a set of receiver nodes.

18

De�nition 1 A collaboration environment � in a computer network is a tuple

� =< S;U ;R;F > (2.1)

where S = (V;E) is a set of sessions �, U is a set of users (hosts, processes, agents,

participants), R is a set of shared resources (media), and F is a set of
oors controlling the

resources.

2.2.1 Entities

Sessions

A session provides the infrastructure for cooperation and collaboration.

De�nition 2 A session � 2 S is a tuple

� =< Sid; Ti; Te; AS ; L > (2.2)

where Sid is a unique identi�er within �, Ti is the initiation or announcement time, Te

is the ending time, and AS is a list of attributes characterizing the session at level L. A

conference is a set of sessions �i 2 S, where i � 1.

Sid is a unique session identi�er per collaborative environment, whose sequence number

space is wrapped around in correlation with the turnover rate and lifetime of sessions in �.

The time may re
ect real-time, logical time, or de�ne a lifetime interval � = Te � Ti. L

denotes the session level (default 0).

AS = (M;O;C) describes purpose and orchestration of a session in terms of membership

M , organization O, and control C, as shown in Figure 2.2. Szyperski [216] characterizes

session types in a similar, but less re�ned way, according to the model of interaction (con-

trolled, dynamic, static) and data
ow (1 � n, n � 1, m � n). For instance, a lecture is a

controlled, long-term interaction between one sender and n receivers. Telemetry is a typical

n � 1 session, and a whiteboard session is typically m � n. Our session characterization

19

applies to speci�c collaborative applications, as well as generic session types in the spectrum

of real-time collaborative work, such as lectures, business meetings, labs, panels, brainstorm

meetings, exams, interviews, or chats.

LAN
WAN
Global

Scope

Membership

Status

LocusControl

Supervision

Organization

Dataflow

Accessibility

A
S

Dissemination
Connectivity

Duration

Media
Composition

Conduction

Nesting

Size

Homogeneous
Mixed

Formal
Loosely coupled

Flat
Hierarchical

Split
Freeze
Merge

Centralized
Roving
Distributed

Unmoderated
Moderated

Security

Persistent
Transient

Closed
Open
Large
Medium
Small

Participation Non-interactive
Interactive Asymmetric

Symmetric

Single user
Peers

Authenticated
Encrypted

Unicast
Broadcast

Unordered

Multicast

m-n
n-1
1-n
1-1

Delivery Causal
Total
Atomic

Ordered

Figure 2.2: Session attributes.

Membership re
ects the composure of the user group in the session. Participation speci-

�es whether information is exchanged unilaterally, or bilaterally relative to a host, impacting

user access rights and data-
ow. Interactive sessions may be symmetric, i.e., all users have

the same view on shared resources (WYSIWIS), or asymmetric, where users pertain indi-

vidual views on the same shared data space (relaxed WYSIWIS) [211]. Size speci�es a small

(< 5), medium (< 100), or large (� 100) number of users, impacting scalability of the coor-

dination mechanism. Accessibility declares whether a session is open, allowing any user to

join, whereas closed sessions allow participation by invitation only. Authorization speci�es

20

whether coordination primitives may use read-only, read-write, or write-only privileges for

the entire session. Users may have individual, role-based authorizations, as well.

Organization entails speci�cs on how the session is to be orchestrated. Data
ow describes

how data are multiplexed among users, with a 1 � 1, 1 � n, or 1 �m transmission model

and with unicast, broadcast, or multicast in a session of n users, where m � n. Delivery

can be ordered or unordered. The various ordering modes are discussed in Chapter 4.

Duration discerns between sessions with longer lifetime (persistent) vs. short-term sessions,

where the precise timing modalities are case-speci�c and left open. The scope speci�es

the hop limit for packets sent by hosts in a particular session, similar to the Time-To-

Live semantics in IP, which allows constraining sessions to a geographic range and retain

privacy or limited dissemination to a speci�c group. Media composition de�nes whether

the session uses a single medium such as audio-only, or mixed media, e.g., a video-audio

combination. Conduction refers to the session agenda and moderation style, which can

be either tightly coupled, i.e., all users know about each other and follow some agenda in

the style of \Robert's Rules of Order" [185], or the exchange is loosely-coupled and not

prescribed. Sessions can be
at (L = 1) or maintain two or more levels with nested groups

(L > 1).

Control depicts the status, locus of control, and security measures activated for a session.

Sessions with overlapping or diverging interests can merge or split. Such recon�guration

of sessions with regard to membership and session events linked to speci�c phases must be

possible without session termination or restart of applications. The session status marks

whether the session is a partition from a larger session, frozen but still deemed as active,

merged or revived. Tracking of states in coordination protocols and the outcome of coordi-

nation processes can be logged and persistent, or ephemeral.

Locus of control speci�es, whether membership and
oor control are being handled in one

central location, partially distributed among several servers, or fully distributed across all

hosts. Partial or full replication is possible for the latter two paradigms. A central controller

can also rove among all sites and achieve better fault tolerance. Distributed control is

21

multilateral, with varying degrees of \consentience" and \equipollence", i.e., how much

everybody participates and how authorities and responsibilities are allocated. Multilateral

control is either successive, partitioned, democratic or anarchic. Successive controllership

allows one distinct controller at a time, and alternates among users, and partitioned control

lets several controllers each perform a subset of control operations. Democratic control

lets all users contribute to the control process, e.g., via voting. Anarchic control gives all

subjects complete freedom of acting and control of sharing is peer-to-peer based.

The locus of control is related to the supervision attribute, indicating whether the com-

munication process in coordination is moderated, peer-reviewed, or free. A moderator

decides which users may send information, what is forwarded to the receivers, or which re-

ceivers may receive a particular content or access a speci�c resource, implementing a notion

of
oor control. McKinlay et al. [151] note for face-to-face meetings that the importance

of chaired guidance increases with the session size, and the diÆculty in performing a joint

task, since each member's ability to participate and in
uence others is reduced. Finally,

coordination touches upon security issues, specifying whether users are anonymous or au-

thenticated in their exchanges, either at session initiation, or at every turn, and whether

information is encrypted.

Hierarchical Sessions

Rajan et al. [180] identify a con
uence as a special session type, where all participants

transmit and receive the same set of media streams mixed together in broadcast, which saves

bandwidth. The notion of con
uences and session nesting leads to the concept of multilevel

or hierarchical sessions. Session hierarchies permit aggregation of users at various levels

of abstraction, re
ecting interests, the stage of task completion, authorizations, temporary

subgroups (coteries), or geographic proximity, and mirror the inherently hierarchical group

dynamics of face-to-face meetings. The hierarchy is denoted with the session level parameter

L, which indicates numerically the position of Sid in a session hierarchy. For instance, in

a 3-level hierarchy, a collaboration or master session has level 0, a session level has level 1,

22

and a subsession is at level 2, which may be suÆcient to characterize most collaboration

scenarios.

Rangan and Vin [181, 225] give formal de�nitions for collaborative systems including

conference, session and stream abstractions for the purpose of automated reasoning about

the properties of multimedia collaborations. Adopting their de�nitions to the session con-

text, we distinguish between simple sessions containing individual users, and super sessions,

recursively consisting of other sessions si;L 2 Si and individuals, with L indicating the level

of membership. We denote the outmost \root" session as level-0 session. Many conference

scenarios contain only two sublevels, subsessions with L = 1 and coteries with L = 2. Co-

teries permit private subgrouping for brief exchanges (\sidechats") [227] without requiring

its members to leave the larger group context or open a separate multicast group. Neilsen

and Mizuno describe a membership algorithm for joining and leaving coteries [157], and

Texier and Plouzeau [218] propose object binding algorithms for multiple sessions, however,

to date a sound mechanism for session management in multimedia collaboration is still

missing.

We also adapt the notion of concurrent sessions, as opposed to sequential sessions, which

allows users to participate in multiple sessions simultaneously. Furthermore, hierarchically-

related sessions allow for inheritance of attributes from parent to child sessions, and aggre-

gation of sibling sessions under a parent session. Figure 2.3 depicts a simple session graph

with three concurrent sessions S1; S2; S3 within a conference C, two subsessions s1; s2 2 S2

and one coterie c 2 s2, containing users U2 and U5 using video. Clustering of users, groups

and sessions may be based on task focus, geographic proximity, media compatibility, and

other criteria. Except for S3, all other sessions are chaired, which is symbolized with a

rhombus. As depicted in s1 [s2, media should be sharable across session boundaries and

users can actively be part of two or more sessions at the same time.

This session structure can also be represented in list notation, separated by the media

in use. Floor holders, a system role de�ned in the next section, are denoted in boldface:

23

Subsession

Floor Holder

User

(A(udio), V(ideo))
Resource

Unidirectional Link

Bidirectional Link

Idle LinkChair

Resource Access
Resources

Floors

Level

Collaboration

Session

Users

Coterie

Entities

C

S2S1

s2s1

3 4 3 4 2

S3

2 1 1 1

c

5 31 2

A V AV V A

2 3

s2

S1

S2C

S3

3

2

1

4

1

2
3

4

2

3

1

5

V

A

A

V V

A

s1

c

1

2

3

Figure 2.3: Hierarchical aggregation of concurrent sessions and corresponding session graph.

((1234)S1((1234)s1(13(25)c)s2)S2(123)S3)CA

((1234)S1((1234)s1(13(25)c)s2)S2(123)S3)CV

(2.3)

Let the relation (Si�ijSj) express a temporal relation (e.g., starts, contains, overlaps,

split, merge, end, info), given sessions Si; Sj , with i; j natural, i 6= j 2 S. Then

S � S � sL � c (2.4)

Vin et al. [226] describe such a hierarchical architecture for media mixing, as required in

a telepresentation system forming a teleorchestra, and derives upper bounds for the media

transmission capacity and the height of a hierarchy, given a number of participants and

mixers, with one speaker being active at a time.

Users

Users belonging to the set U in our formal speci�cation of a collaborative environment

are also referred to as participants, subjects, or session members. Alternatively, a user is

equated in protocol descriptions with the host or the processes in use. We de�ne users and

their roles as follows:

24

De�nition 3 A user U 2 U is a tuple

U =< Uid; Sid; Loc; Tj ; Tl; AU > (2.5)

where Uid is a unique identi�er within the session Sid, Loc is the local or remote location,

given as IP-address or unique host identi�er, Tj is the joining time, Tl is the leaving time,

and AU is a list of user attributes.

Processes can be system agents [65, 134] executing on behalf of a user. The user at-

tributes AU are depicted in Figure 2.4.

Identity

Authority

Role

Access

Entry

Floor Holder
Owner

Moderator
Basic

Superuser

Social

System

Floor Coordinator

Notetaker
Panelist

Speaker
Listener

Send-Only
Send-Receive
Receive-Only

Anonymous

Independent
Reflective
Consultative
Partitioned
Voted

UA

General
Inactive
Receiver

Registered

Figure 2.4: User attributes.

Accordingly, users are characterized by their roles, authority, identity, entry capabilities

and access rights, which impact the applicable
oor control strategy. Users can be co-

located in the same space, or geographically distributed. We distinguish between social

and system roles. Social roles describe the function of a user within a session, e.g., being

a panelist or lecturer. System roles refer to the control function within a
oor control

protocol: participants without a speci�c role can be either a receiver or inactive. The

owner of a resource R is the node that injects R into a session and initiates
oor control

for R, which may vanish from a session if the owner leaves. The
oor coordinator (FC)

is an arbiter over a resource R, or a session moderator granting or denying a
oor on R

25

during session time to the
oor holder (FH), who attains the exclusive right to work on R

for a
oor holding period. FC and FH may be located at di�erent nodes, or be assumed

by the same node. These roles may be statically assigned at session start, or rove among

users during session conduction. Users without control roles are general session members,

and can be active or inactive, depending on whether they invoke state transitions in the

coordination mechanism.

A moderator is a special FC case, where the coordinator role is assigned to a user to

supervise content exchange, resource usage, and membership for a speci�c section of the full

lifetime of a session. A moderator-driven session, mediated through a speci�c host, results

in a centralized coordination scheme, even though the host topology may be decentralized,

with known shortcomings in eÆciency and resiliency. Moderators may be selected, because

they start a session or are chosen by session members in advance, or they may be elected [85,

207] at session runtime. Tijdeman [219] discusses a solution for the chairman assignment

problem such that at any time the accumulated number of chairmen from each state (or

session) is proportional to its relative weight. Role-based
oor control in dynamic sessions

contrasts static role-based access control (RBAC) models [193]. Roles can be inherited from

a supersession to a subsession.

Authority de�nes whether the user is a simple participant, privileged as system root user,

or moderator, linking this �eld with the role entries. A moderator can be permanent FC. As

a social role, the moderator equates to a session supervisor being able to inspect all session

turns between users. Identity speci�es whether the user wants to remain anonymous or

whether the Uid can be posted to the session. An entry is either independent, i.e., unaware

of the actions and entries of others, re
ective, i.e., polling session members, consultative

based on \contextual clue messages", partitioned and representing a subtask, based on

voting among the group, or debriefed and recorded [67]. In addition, user entries may be

temporary or permanent, and logged for the purpose of reviewing histories of collaborative

sessions, or for undoing certain steps [176]. Access de�nes the basic privileges for working

on a resource, in receive-only, send-and-receive, and send-only mode, analogous to read

26

and write authorizations in �le systems. We introduce the notion of a group to describe

associations of users within sessions.

De�nition 4 A user group (multicast group) G is a set of users U with common session

and user attributes, expressing a common media or task focus, such that U � G � U .

Resources

Multimedia collaborative systems use a polymorphic or multimodal mix of resources being

shared across networks. A resource can be an application, host object, or network entity

shared in collaboration at various levels of granularity. Four primary classes of multimedia

traÆc with di�erent Quality-of-Service characteristics exist [5]: control packets for coor-

dination information are mostly of low volume, but need reliable transmission; real-time

media transport time-critical information and tolerate some loss; elastic media are apt for

discrete information with relaxed timing constraints, but tolerate no loss; and bulky media,

which require high throughput and reliable transmission, but can tolerate some delay. We

de�ne resources as application components in our coordination framework:

De�nition 5 A resource R 2 R is a tuple

R =< Rid; Sid; P id; Uid; Tc ; Td; AR > (2.6)

where Rid is a unique resource identi�er owned by user Uid within session Sid. Pid is the

parent identi�er or the resource that Rid belongs to, Tc is the time of creation or injection

of the resource into the collaborative workspace, Td is the deletion time, and AR is a list of

resource attributes.

Rid designates both discrete media and streaming media and may contain the port

where the resource is transmitted. The resource attributes AR are depicted in Figure 2.5.

The Pid value allows for recursive subsumption of resource components within resources,

and hence sharing or resource components at an arbitrary granularity. For instance, users

can share an entire window, or a graphical object within that window.

27

Class

Type

Usage

Priority

QoS

Protection

High

Low

Lossiness
Resolution
Delay
Color

Top-secret
Secret
Confidential
Unclassified

A
R

Medium

Text
Graph
Still Image
Audio
Video
Hypertext
VR

Speech
Music

Recorded
Live

Code
Pull
Push

Exclusive
Concurrent

Device

Continuous
Discrete

Figure 2.5: Resource attributes.

Class describes whether the resource is continuous or discrete. Type characterizes the

media object class, indicating whether a resource is text-based, graphical, or some real-time

medium and identi�es the purpose it serves. Resources can be virtual, or they can represent

actual remote devices, for example, a surgical instrument in telemedicine. Resources can be

mixed and need not necessarily be proprietary to the session from which they are accessed,

but could also be hosted on a machine \outside" of the session. Coordination on text, as the

default medium for most collaborative system, revolves around alternate typing, for instance

in chat tools, or concurrent editing from chapters or sections to single sentences. Text can

be plain ASCII, or one or various rich text formats with formatting commands. Graphics

tools, such as drawing and design tools, necessitate coordination in time and space, either by

marking areas on a shared canvas or objects for shared editing, or by introducing graphical

widgets such as telepointers. Functions that compute or render the shared workspace in a

speci�c way are another coordination component. Still images require also spatiotemporal

coordination and allow for multiple image formats, such as TIFF, GIF, or JPEG.

28

Audio tools, for speech, or music data (such as MIDI) require temporal coordination in

recording and replay, and spatiotemporal coordination in editing. For instance, a shared au-

dio channel or music stream requires sequenced access, whereas joint editing of a music score

is a spatial aspect. Silence detection is useful for more eÆcient processing of audio streams,

but also help to trigger speaker
oor switching. Video concerns motion image display and

editing, either from a live source, stored locally, or replayed on demand, and is often used in

combination with audio, requiring temporal coordination. Various formats, such as H.263

or MPEG, would be supported. Hypertext information is multimodal and integrates all

of the above resource types using, for instance, HTML or XML, and is either geared for

server-push or client-pull. VR (Virtual Reality) [38, 92] is similarly multimodal, but adds

input and output devices giving the user three-dimensional orientation or tactile sensations.

Coordination must be interfaced with collision control [110] in virtual spaces. Code com-

prises application-speci�c structured documents such as Postscript, MIME email [28], or

LATEX. A device is a hardware unit serving as access point, such as a camera. A multimedia

conference is a conference using multimodal resource types.

Usage determines if the resource can be used concurrently by multiple users or requires

sequential processing with exclusive
oors. For instance, a shared whiteboard allows for mul-

tiple concurrent telepointers with a small number of users, whereas a remotely controlled

camera can only perform a positioning command for one user at a time. Priority sets an

importance value on the transmission and processing of the information, preempting other

media dissemination of lower ratings. QoS de�nes the required Quality-of-Service [213] for

the resource, including the tolerable loss, the required resolution, the possible maximum

delay, and the color depth. Other criteria may be added depending on the nature of the re-

source, such as the channel number, a frame-rate, encoding scheme, sampling rate etc. The

Protection attributes denotes whether a resource is public, private, or proctored, which may

be expressed with a numerical value, or work in analogy with the Bell-LaPadula model [21],

discerning between top-secret, secret, con�dential, or unclassi�ed information [69]. The

degree of security determines the required encryption level and method to prevent forgery

29

of control states and coordination messages. In contrast to traditional models of protec-

tion giving access to a resource based on user identity, coordination-based access must take

into account the task to be performed. Predominant measures to shield o� internetworks

with �rewalls make real-time collaboration very diÆcult and are a major impediment in the

realization of Internet collaboration. While new concepts for secure collaboration architec-

tures are emerging [88], eÆcient key management and encryption in conjunction with
oor

control have yet to be developed.

Type T S RT L J BW FD

Text
Editor

p
l t, s, f

Chat
p p

l t
Email l t, f
Scheduling

p
l t, s

Coding
p

l t, s, f
BBS/Usenet m t, s, f
Spreadsheet

p
l t, s, f

Audio
Speech

p p p p p
m t

Sound
p p p p

m t, f

Images/Video
Still

p
m/h s, f

Motion
p p p p p

h t, f

Graphics
Still f2D; 3Dg p

m t, s, f
Motion f2D; 3Dg p p p

m/h t, s, f

WWW
p p

l-h t, s, f

Virtual Reality
p p p p

h t, s, f

Table 2.1: Resource types and handling characteristics.

Various collaborative applications use di�erent mixes of resource types: chat tools are

text-based; multimedia email can contain text, images and sounds in various �le formats;

scheduling tools are typically text or graphics based; collaborative computer-aided soft-

ware engineering (CASE) tools are typically text-based; shared spreadsheets are text-based,

which includes numerical entries; audio tools can use continuous or stored soundstreams,

without or with known time limits. Similarly, music tools, using for example the Musical

Instrument Digital Interface (MIDI) format, use speci�c sound encodings; still images use

speci�c encodings such as JPEG; video tools use speci�c motion video encodings such as

30

MPEG or MPEG-2; hypertext systems such as World Wide Web browsers use any mix

of text, images, graphics, audio and video; and virtual reality systems use graphical and

photo representations in combination with sound, encoded in descriptive languages such as

VRML. The media types used by these generic applications determine their control and

coordination characteristics. Media types can be: lossy (L) vs. lossless; transient (T) vs.

persistent; are suited for synchronous (S) or asynchronous groupwork; may require real-time

transmission protocols (RT); can be vulnerable or insensitive to latency (L) or jitter (J);

and may require high or low bandwidth (BW). Media with focus on spatial sharing may

require spatial (s)
oors (F) for access regulation, in contrast to media, where contention

arises in the temporal domain (t), or with regard to the use of speci�c functions (f). Ta-

ble 2.1 summarizes these media properties (a
p

indicates that the property applies for the

respective media type).

Figure 2.6: Resource access scenarios: (a) Centralization, (b) Producer-Consumer, (c) Repli-
cation, (d) Distribution, (e) Multi-resource access, (f) Multi-resource consumption.

Resources r 2 R can be located at one particular node, or distributed in their com-

ponents across the node set, or they can be replicated at several or all nodes. Figure 2.6

depicts the various access paradigms for shared resources. In case (a), one or more resources

are centralized and accessed by multiple parties; case (b) lets one host produce a resource

and other hosts consume it; (c) shows the case where each party maintains some replica of

the same resource locally, exchanging updates on a regular basis; in case (d) all hosts main-

tain partial information on the shared resource, using a distributed protocol to aggregate

31

the information; and cases (e) and (f) show access or consumption of multiple resources by

multiple parties. These constellations are the baseline for con�guring a coordination mecha-

nism to adapt to various con�gurations of the shared workspace. A location mechanism for

resources within sessions, and mapping scheme from resource objects to multicast groups is

needed, as partially implemented with the CCCP protocol [104].

Floors

A
oor is a temporary access and manipulation privilege for multimedia resources in interac-

tive groupwork. It is a computational metaphor for the \right to speak" [185], generalized

to the domain of CSCW. A
oor control protocol mediates access to shared objects by

granting
oors according to a group-speci�c service policy.

De�nition 6 A
oor F 2 F is a tuple

F =< Fid;Rid; Uid; Ti ; Td; AF > (2.7)

where Fid is a unique
oor identi�er within the shared workspace for a resource Rid, as-

signed to user Uid at inception time Ti, and deactivated at time Td, with AF denoting a list

of
oor attributes.

Note that one Rid may have multiple Fid assigned for control of various granules, but

each
oor is controlling exactly one resource. Floors are indirectly associated with sessions

via Rid, and
oor properties may be inherited from a master resource to its subcomponents.

We assume that one
oor F is assigned per resource component. The pairing (Fid, Rid)

speci�es the granularity of control and the commands available with possession of the
oor.

A
oor can control an entire conference, an application, a single window, or a shared

object [133]. For instance, for audio the associated commands may be talk, mute, pause.

Video
oor commands are for instance caption, forward, cut, replay. Floors can be

static relative to a session lifetime, or dynamic, i.e., assigned ad hoc by a computer or social

protocol. The combination of Uid and the attributes speci�es whether the user is FC,

32

FH, chair, or general participant. Ti and Td may be set using real-time clocks, or a logical

session time. Figure 2.7 depicts the
oor attributes.

Directionality

Invalid
Frozen
Revoked

Idle
Free

Instantiation
Multiple
Single

Explicit
ImplicitPassing

State

Policy

Immediate

Moderated

Modality
Backchannel

Main

UseLifetime

Request

Indefinite
Timer

Queue
Discard

Preemptive
FCFS
LCFS

Strategy Pessimistic
Optimistic

Sender
Receiver

A F

Req
Busy

Figure 2.7: Floor attributes.

With regard to directionality, we discern between sender
oors and receiver
oors. A

receiver
oor refers to the passive control concept that enables a user to �lter or deny

speci�c received streams (\What I See Is What I Want"). Floor control typically refers

to sender-oriented control, which may reduce traÆc signi�cantly (\What You See Is What

I Share"). State de�nes the generic operational states of a
oor control mechanism. Free

denotes an available, unused
oor, Idle denotes an assigned, but inactive
oor, Req marks

a
oor as being requested, Busy is the tag for a granted and assigned
oor. A generic

oor control protocol de�ning the transitions between these states is depicted in Figure 2.8.

Additional states can be introduced, e.g., Revoked marks a
oor, whose lifetime is shortened

by a moderator or a preemption mechanism, Frozen marks a
oor in a pending session, and

Invalid identi�es a nonexistent
oor.

33

Req

Busy

Idle

Free

REQUEST GRANT

ACTIVE

WAIT

INACTIVE

PAUSE

RESUME

RELEASE

CANCEL

ASSIGN

REVOKE

INVALID

Figure 2.8: Generic
oor control protocol.

Floor control can be relaxed for concurrent activities where the chance of direct con
ict

is smaller, e.g., in joint editing of text paragraphs, but it must be strict in opposing activities

such as speaking over the same audio channel. Instantiation de�nes, how many instances of

the same
oor may exist concurrently in the system. A remote instrument with exactly one

function to be shared permits a single
oor, whereas telepointers on a whiteboard canvas

may coexist in multiple renditions. Disjoint parties may receive multiple instances of a

oor, e.g., user groups (U1; U2)A and (U3; U4; U5)A may independently converse with an

audio
oor F = A.

Passing describes whether
oor management is tangible or transparent to end-users.

Explicit control gives handles to users to start and initiate turns based on the exchange

of markers that signify possession of the
oor, in contrast with implicit control, where no

beacons are exchanged to transfer
oors. Control may follow a programmed session agenda,

or allow for open interaction. Explicit control is manifested for instance by pressing the

Request button in a shared application. Implicit control is realized by users observing

inactivity on the resource and taking action when appropriate. Policy will be discussed

in more detail in Chapter 3 and de�nes the request and usage rules. The request policy

determines whether
oor requests are immediately satis�ed, queued and served according

a queuing policy, or discarded, when there is no opening for the
oor. A chairperson may

preempt any
oor activity. UseLifetime denotes whether a
oor can be used inde�nitely

34

until being requested, or whether a timer or moderator controls the duration of usage.

Modality distinguishes between main
oors assigned for primary communication from a

sender to a receiver and backchannel
oors used to give brief feedback.

We can distinguish between four paradigms to deal with race conditions in cooperative

work: blocking of con
icts with exclusive locks, disallowing of con
icts with permission

tokens, mitigating con
icts by detecting dependencies and reordering of activities into non-

con
icting series, and resolving of inconsistencies created through con
ict. The �rst two

paradigms are restrictive and prevent con
icts, the latter two are permissive and allow for

progress into con
ict with preconditions and postconditions. Therefore, the strategy entails

pessimistic control following the premise of con
ict avoidance, versus optimistic control as

the strategy to allow con
icts and provide means such as dependency detection [211] to

resolve them.

Several other notions are important to the concept of \controlling the
oor". For facili-

tation of some sessions, a chair provides the necessary group cohesion, moderating activities

and hence ensuring rapport among members. Assistive
oor control aids a session chair in

orchestrating a session, while autonomous
oor control steers sessions without chair guid-

ance. Floor management can be manual, supporting a human conference chair to determine

which user in a session may speak next, or in a larger sense, become active on a shared

resource. Automatic control lets users gain access to shared resources, steered by a
oor

control process (
oor \daemon", \agent", \engine"). Such a module may be intergrated in

the applications, or support applications as middleware. We furthermore distinguish be-

tween temporal (t), spatial (s), or functional (f)
oors designating the control domain needed

to resolve in groupwork with a speci�c resource type. Temporal sharing indicates timely

or causal con
icts, e.g., in the alternation of speakers in conversations. Spatial sharing

con
icts arise by using the same presentation area or storage space of a shared workspace,

e.g., pixel areas in a drawing canvas, a �xed-size bu�er or paragraphs in a text document.

Functional sharing centers around usage of the same application functions that change the

status or content of a shared resource, e.g., zoom in for remote camera control.

35

FloorholdersFloor Control
Coupling

(b)(a)

T(elepointer)

A(udio)

V(ideo) U

U

��
��
��
��

����

���
���
���
���

������

��
��
��
��

Primary floor

���
���
���
���

2
t

Feedback period

1

Backchannel floor
���
���
���
���

Users

��
��
��
��

����������

������

����

����

������

������

����������

����������

1

2 3

4 5

1

2 3

4 5

1

2 3

4 5

Figure 2.9: (a) Concurrent, coupled
oors, and (b) backchannels.

We furthermore distinguish between mutually exclusive and mutually selective
oor con-

trol schemes, where either one
oor is assigned to n users on one resource, or k
oors are

assigned to n users, k � n. While exclusion avoids write-con
icts, selection relaxes control,

but does not guarantee avoidance of con
icts, e.g., with the concurrent use of telepointers.

Figure 2.9 (a) depicts a scenario where users communicate with video, audio, and tele-

pointers. User pairs (U2; U1) and (U3; U5) do not overlap in their usage of audio and video.

Dual assignment of concurrent
oors within the same group is hence possible. This con-

cept is similar to shared locks [3] in database systems, where two-phase locking is extended

by allowing two locks to be held concurrently by di�erent transactions to execute on the

same object. Floors may be coupled, i.e., jointly assigned for the combined use of media

Ri, denoted as �[U; (Ri)]. In Figure 2.9 (a), we have �[U2; (V;A)] and �[U3; (V;A;G)],

representing the joint use of telepointers with audio, as for instance in a lecture. Coupling

of
oors necessitates synchronization mechanisms for mixed media [170]. The concept of

backchannel
oors usable for short-term feedback is depicted in Figure 2.9 (b).

2.2.2 Capability Description

The presented model serves both theoretical and practical purposes. It provides a more elab-

orate framework for formal speci�cation and validation of collaborative systems, e.g., with

the prototype veri�cation system [180]. It also allows for session capability descriptions [166]

to set up and query the membership and coordination status of an active conference, where

a capability is understood as a resources or system feature in
uencing the selection of useful

con�gurations for components.

36

<C> = <S> <U> <R> <F>

<S> = (2374, 1700, 2000, <M>, <O>, <C>, 0)

<M> = (noninteractive, small, closed

<O> = ((1-n, broadcast, total), transient, LAN, mixed, loosely coupled, flat)

<C> = (normal, centralized, single moderator, authenticated)

<U> = (1, 2374, local, 1700, 2000, <Ro>, <Au>, <Id>, <Et>, Ac>)

<Ro> = (speaker, FH)

<Au> = (moderator)

<Id> = (registered)

<Et> = (independent / consultative)

<Ac> = (send-receive)

<R> = (23, 2374, nil, 1, 1700, 2000, <Cl>, <Ty>, <Us>, <Pr>, <QoS>, <Pr>)

<Cl> = (cont)

<Ty> = (live video)

<Us> = (concurrent)

<Pr> = (high)

<QoS> = (10%, 352 x 288, 15fps, low, rgb)

<Pr> = (unclassified)

<F> = (12, 23, 1, 1700, 2000, <Di>, <St>, <In>, <Pa>, <Po>, <Md>, <St>)

<Di> = (sender)

<St> = (busy)

<In> = (single)

<Pa> = (explicit)

<Po> = (immediate, indefinite)

<Md> = (main)

<St> = (pessimistic)

Result of capability description query.

A sample capability query obtained for a lecture session, with the professor as moderator,

the video channel as resource, and its
oor properties is shown above. The session identi�er

is Sid = 2374, with starting time 5 : 00 pm, ending time 8 : 00 pm and
at organization.

2.2.3 Consistency

The consistency of a coordination protocol refers to the integrity of state updates and the

level of synchronization at all hosts in a session. Various levels of consistency on shared

37

resources are possible: In strict consistency, updates of one atomic interaction are enforced

on all replicas of a shared resource (or its output) at all times. With semi consistency,

updates of one atomic interaction are enforced on a subset of active sites at all times. Loose

consistency enforces that updates on interactions are manifested at all replicas of a shared

workspace at all times. In weak consistency, updates of several interactions are are enforced

on a subset of active sites at regular intervals. With null consistency updates of interactions

do not need to be consistent and are integrated between peers on demand. The decision on

which consistency model to use depends on the application type, resource, and groupwork

modalities. A heterogeneous consistency model, embracing hosts and applications with

varying capabilities [235], must be based on a uni�ed representation scheme for shared

resources.

2.2.4 Turn-Taking

Group coordination and facilitating technologies such as
oor control are closely related to

the mechanisms of turn-taking among multiple parties. Turn-taking describes the patterns,

by which activities of group members are sequenced [133], including speaker (or collabo-

rator) turns, interruptions, and passing the
oor. Turn-taking has previously been mostly

studied in the context of conversation analysis in linguistics and psychology [191], for face-

to-face meetings [16], and computer-mediated communication [160]. On the contrary, we

generalize the notion of turn-taking and the
oor to the context of networked multimedia

systems, to devise evaluation methods and protocols for multimodal
oor control in syn-

chronous collaboration. Our objective is to build a bridge between coordination studies in

traditional linguistic domains, CSCW, and computer networking.

Related Work

In linguistic terms, conversational structure is shaped by simple turn-taking protocols, which

de�ne the passing of speaker control (\
oor handover") among multiple parties at transition

relevance points (TRP) [191]. Conversation analysis (CA) is an established method [151]

38

for describing the management of conversations. In contrast to pragmatics [138], which

theoretically analyzes what may have been meant with a given expression, CA observes

conversational interactions based on what is said or done, providing a means to understand

the implicit rules of interaction. Two problems ordinarily encountered in a basic turn-

taking system described by Sacks, Schleglo� and Je�erson [191] are competition for the

speaking turn and the frequent overlaps and corrections that follow. Semantic content from

a previous turn may create expectancies and impact the turn-taking behavior for the next

turn, for instance in the form of \adjacency pairs" such as questions and answers, which

are pairs of statements belonging together. Turn-taking also depends on the valuation of

the back channel signal in a turn. Larrue et al. [132] describe the turn-taking procedure in

chaired meetings, consisting of turn-allocation from one speaker to the next speaker, and

next speaker designation, where the chairperson draws the next designated speaker from

a list of requests. Moderated turn-taking avoids competition for the next turn and the

collisions or overlaps implied otherwise.

Computer-mediated communication and collaboration fail in various ways to match the

quality of face-to-face interaction, largely due to the lack of social presence and the degra-

dation or absence of subtle cues such as hand gestures, facial expressions, intonations, or

postures. Online presence in the notion of \being logged on" is not suÆcient for synchronous

cooperation to establish substantial rapport among users. It has hence been suggested that

nonverbal cues, such as head-turning and gaze, are relevant for
oor keeping, requesting,

taking or avoiding, linking groupware to the connotation of \group-awareness". Various re-

searchers [67, 133] subscribe to the notion that session participants can maintain suÆcient

passive awareness through the shared workspace interface, using \free-for-all"
oor control

ad hoc and based on social conventions. However, very little empirical evidence indicates

that visual channels add signi�cantly to audio support in collaborative work. Previous at-

tempts [63, 99, 133, 147] to improve collaboration awareness in synchronous collaboration,

e.g., by video and audio and annotated telepointers, have been not convincing. Having

more cues available may also imply that it is easier for a speaker to hold on to the
oor.

39

Additionally, the reciprocity rule (\If I can see you, you can see me") does not always hold

in CSCW systems.

Sellen [201] follows up on this hypothesis and compares conversational turn-taking in

technology-mediated conditions with same-room and audio-only scenarios, reporting that

turn-taking was una�ected even in complete absence of visual information, even though con-

versationalists considered visual information as most important. The fewer cues available,

the greater was the reported experience in psychological distance from conversation part-

ners. Only same-room conversations resulted in more interruptions and fewer formal
oor

handovers. Simultaneous starts were as likely to occur in same room conversations as with

computer mediation, indicating that this problem is inherently a
oor control problem. The

conjecture was that better system design may be able to compensate for the shortcomings

of current video conferencing systems. A similar study by O'Conaill et al. [163] compared

video-enriched conversation over ISDN and an optical Live-Net with face-to-face meet-

ings. ISDN mediation resulted in fewer backchannels for feedback, less anticipation of turn

endings, and more formal interaction. Interaction over Live-Net was also highly formalized

Isaacs et al. [113] report that Grice's interaction maxims [94], which comprise quantity

(as little as possible, as much as necessary), quality (truthfulness), relation (relevance), and

manner (clarity), are more pertained to in computer-mediated interaction than in face-to-

face meetings. A study by Watabe et al. [230] indicated that speaker distinction decreases

rapidly with increasing group size.

McKinlay et al. [151] studied user conversation behavior with a text-based WYSIWIS

collaboration system, comparing explicit turn-taking (ETT), using status icons signaling

ready-to-talk and ready-to-listen cues, versus implicit turn-taking (ITT) in the absence of

such cues. They observed that social presence itself constitutes a back channel to sustain

mutual understanding. The mean turn pause length for ETT was on the average signi�-

cantly shorter than with ITT, which is representative for the concept of passive collaboration

awareness. Active, explicit turn-taking, through status icons and
oor control is more suc-

cessful because of its non-ambiguity. In addition, three policies (\computer-mediated com-

40

munication conditions") have been studied, free-for-all (FFA) request-and-grant (RAG),

and request-and-capture (RAC). In FFA, subjects would establish their interpersonal turn

management rules. In RAG, a user request was placed in a queue and served on a �rst-

come-�rst-served basis, after the current turn-holder had �nished and explicitly relinquished

the turn by pressing a button. In RAC, any user can seize the turn anytime, independent of

the current status of the active
oor holder, which allows for interruptions at any moment.

McKinley also points out that in FFA, subjects contend for attention, contrasting RAC,

where subjects contend for the
oor. RAC promoted \wrestling" for the turn, involuntary

turn giving, and immediate attempts to recapture the
oor in reaction to an involuntary

change of turn. Groups of various sizes were tested in a computer-mediated vs. face-to-face

context, showing that RAG was the most successful turn management scheme, placing FFA

second and RAC third. The study stresses that computer-mediated turn-taking, unlike

speech, is not memory-less, but a semi-permanent channel, where problems associated with

increase in group size can be suppressed in comparison to face-to-face meetings. According

to this study, the use of signaling for turn-taking support did not detract from communi-

cation and helped to reduce pauses and overlaps in small groups. It is hypothesized that

group size may be of less importance when turn management protocols permit some degree

of parallel activity.

Walker [229] argues that anticipation of one's turn is essential for smooth conversational

turn-taking. Detection of and reaction to turn-taking signals are deemed a high-level social

skill rather than a simple stimulus-response mechanism. Turn-yielding and turn-taking

signals to mediate
oor apportionment are composites of various linguistic and nonverbal

cues. The steps in the perception of, and reaction to a turn-yielding signal consist of an

utterance stage by a speaker A, a cue inspection time V , a period of length D, in which

another person B decides to speak and prepares, and a time B to activate the speech. A

200msec pause was identi�ed as a criterion for a turn-triggering pause.

41

Activities and Causality

Our focus in previous sections has been on entities and their states in a collaborative en-

vironment. A di�erent way of looking at interaction in CSCW systems is by describing

activities and behaviors [31], in order to specify action structures and their safety and

liveness conditions. We understand collaboration as a coordinated series of activities, i.e.,

operations on shared resources, and represent activities with a causality relation to describe

the operational semantics of sharing. A turn denotes the period from the beginning to the

end of an activity. Combining turn-taking with causality conditions allows characteriza-

tion of collaboration with a partial precedence relation to indicate separateness or con
ict

freedom on a shared resource.

Let A be a countable set of possible activities in a session, and let Ap � A denote the

set of possible activities. The total function

�R : Ap ! T (2.8)

associates with every activity a 2 Ap a turn t = �R(a) on resource R. We also assume a

partial relation \�c" in Ap, de�ning a causal order [128] on a1; a2 2 Ap:

a1 �c a2 (2.9)

This means, either that a1 = a2, or that the activity a1 happened before activity a2, i.e.,

a2 cannot start before a1 is completed. The triple (Ap;�c; �R) is called a activity structure

or task on R, which is called sequential, if the ordering �c on Ap is linear. Two tasks

p = (Ap;�c; �R) and q = (Aq;�c; �R) are isomorphic, denoted as p � q, if and only if there

exists a bijective mapping % : Ap ! Aq such that

8a1 2 Aq : �p(%(a1)) = �q(a1); (2.10)

8a1; a2 2 Aq : %(a1) �c %(a2), a1 �c a2 (2.11)

42

For a given task (Ap;�c; �R), the relation a �c a2 between two activities a1 and a2 can be

interpreted as follows:

1. Activity a1 is causal to activity a2;

2. Activity a2 uses an outcome of activity a1, i.e., a1 cannot happen concurrently with

a2;

3. Activity a2 starts after activity a1 has �nished;

4. There exists an activity sequence ai;1; ai;2; : : : ai;l such that ai;1 = a1; ai;l = a2, and for

all j 2 [1; l � 1], the activities ai;j and ai;j+1 are either causally related by 1. - 3.

Condition 3. implies 1., but not vice versa. An activity is called sequential, if the causal

ordering relation �c is linear. If a1 and a2 do not causally precede each other, they are

called independent and may be carried out concurrently without
oor-controlled mediation.

Floors must be granted to activities that are mutually exclusive (ME). For a given task p,

we de�ne the ME-predicate for two activities a1 and a2 in turns t and t0 as

ME(p; t; t0) � 8a1; a2 2 Ap : �p(a1) = t ^ �p(a2) = t0) a2 �c a1 _ a1 �c a2 (2.12)

Observation of ME preserves the consistency of the shared workspace. Collaboration

consists hence of sequences of activities aggregated in turns t = (a1; a2; : : : ; ai)R on a re-

source R. Viewing activities as building blocks for executing tasks, causal precedence applies

also to subsets of a sequence (\partial activity") and sequences of sequences (\composite

activity"). Activities can be either goal-oriented, e.g., �nishing by a speci�c deadline, or

process oriented, e.g., by following a given agenda, but without goal-orientation. Outcomes

of activities may be transmissions of streams (audio, video), state changes in devices (camera

pan left), or read/write operations on objects in the shared graphical workspace.

43

Turn-Taking Model

Note that the above studies have been conducted with various simplistic chat applications

and video conferencing systems in small networks, analyzing the shortcomings of CSCW

to replicate face-to-face interactions. We subscribe to the view that more sophisticated,

automated turn-taking strategies in collaborative multimedia systems, implemented as net-

work support for applications, will augment social protocols, compensate for lack of social

presence, and add capabilities such as playback, undo, �ltering, while enabling interaction

across long distances. Based on the conjecture that coordination and cooperation across

computer networks are based on structuring rules similar to those in linguistic discourse, we

de�ne a turn-taking model to regulate concurrent activities on shared multimedia resources

using
oors. Our objective is to assess turn-taking between users, not just between users

and the computer, from a network protocol perspective, adapting conversational concepts

to the computational domain.

De�nition 7 A turn consists of a sequence of activities and pauses by a
oor holder. A

oor holder gains the
oor when he or she begins accessing a resource to the exclusion of

any other session member. The duration (\
oor lifecycle") of a turn is delimited by the

time the
oor is granted to the time when the
oor is relinquished, excluding propagation

times to signal these changes. A group turn denotes a collaborative activity where two or

more session members are active together. A
oor handover occurs whenever one person

or group looses the
oor and another user or group gains it. A turn is called correct if the

oor management governing the turn is correct.

A turn, as a sequence T = (a1; a2; : : : ; ai)(Rj) of activities a on a resource Rj , must

guarantee atomicity of the performed operation, and consistency at any random snapshot

of the collaborative system. Its `
oor lifecycle" includes signaling and usage from onset

to hando�. The partial order (�; <H) de�nes a collaborative history H for a series of

turns, where � is the set of operations executed during turns Ti in a sequence of turns

44

(T1; T2; : : : ; Tk), where k is the turn count. Figure 2.10 depicts an abstraction for the
ow

of turn-taking messages between a local user L and a remote user R.

Rc Lc
Ld / Rg

Rd / Lg

Lr

Rr

Rg

Lg

Figure 2.10: Turn-taking control and activity
ow abstraction.

Turn-Taking and Floor Control

Interpreting the abstraction as a state transition diagram, the four nodes represent control

or activity states of users L and R, and the transition labels represent the events or control

signals triggering the state transitions. This model is a basic two-party rendition for a

generic
oor control mechanism without moderation and can be generalized to the n-party

case with maximally N(N�1)
2 pairwise
ows. Turntaking results in a L�R�L�R�L�R:::

hand-o� pattern for a particular
oor, with varying
oor holding times per turn. Each

node may assume the role of source or receiver at the same time for multiple, concurrent

interactions. The model in can be interpreted twofold, depicting the
ow of coordination

primitives for control, or activity states, and transitions among the two parties:

1. The set of states and events models the control
ow in two-party interaction, with �

and
 denoting \holding the
oor", and � and Æ denoting \concludes and relinquishes

the
oor". Rr denotes the event \R requests the
oor", Rg represents \R gives up

the
oor" (alternatively, \R grants the
oor"), Rc denotes \R permits 'continue' ",

and Rd \R demands the
oor" (symmetric for L).

2. The set of states and events models an activity
ow between L and R, with �; �;
; Æ 2
Rt
a for an activity a on resource R of type t. For instance,

45

Raudio
a = ftalk; listen; pause;mute; replay; : : :g (2.13)

The events r; g; c; d indicates state transitions to trigger the respective activities. Cer-

tain activities may be forbidden or void in a given combination, depending on resource

types.

Figure 2.11: Conceptual model for turn structure.

Figure 2.11 depicts the generic
oor timeline of a turn on some resource R during session

time t, consisting of the contention period X, the activity or busy period B, and an idle

time I. The contention period may overlap with the busy and idle periods of the previous

oor holder, and models the time in which the previous holder, a moderator, or a
oor

allocation mechanism determine the next
oor holder. The activity time is the
oor lifecycle

time. The idle time models the handover period, in which the next collaborator decides to

request the
oor and the current holder is formally holding the
oor, but not using it. Turn-

taking relevance points (TRPs) mark
oor handover moments, recognized with awareness

mechanisms or social protocols, or implemented with a
oor passing mechanism, e.g., using

a token.

Based on the turntaking structure, we propose a generic protocol capturing the collab-

orative semantics of resource usage, with H denoting the current
oor holder, and N as

the next holder in line. The protocol is media-type independent and considers causality,

multiple and codependent
oors.

46

1. Rules applying to the �rst TRP of any turn:

(a) N must obtain a
oor on a shared resource before executing an operation on

that resource.

(b) If H selects N for next turn, H must relinquish the
oor and N takes the
oor

in the follow-up TRP.

(c) If H does not select N, then any other party may self-select, with the
oor being

granted to the �rst person according to the policy in use (default FCFS).

(d) If H has not selected N, and no other party self-selects, then H may continue

and claim the
oor for the next turn.

2. Rules applying to subsequent TRPs:

(a) Rules 1. (a) - (d) apply to determine the next
oor holder.

(b) On a turn and for any two operations p and q, if the
oor for p is compatible

with the
oor for q, the
oor for q may be acquired after the completion of p,

such that q observes the e�ects of p.

(c) Multiple instances of
oors for the same resource Rj may only be assigned to

node sets, which are disjoint, i.e., for two
oor holders H1 and H2 and node sets

Nm and Nn, (H1 [Nm) \ (H2 [Nn) = ;, m 6= n � jN j.

(d) Codependent
oors (for synchronized media such as audio and video) must be

acquired and released together.

The average turn distribution H among collaborators can be measured [201] with

H = �
X
i

pilogpi (2.14)

where pi is the proportion of the total number of turns in a session by user i. This allows

to assess the average uncertainty (or information) about who has the
oor at a given time,

plotted in Figure 2.12. The graph corresponds to the intuition that low-pro�le and highly

active users are more prominent as
oor-holders in a session than users that attain the
oor

with average frequency.

47

0.00

0.20

0.40

0.60

0.80

1.00

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

A
ve

ra
ge

 u
nc

er
ta

in
ty

 a
bo

ut
 w

ho
 h

as
 fl

oo
r

at
 a

ny
 g

iv
en

 ti
m

e

Proportion ot total number of turns of person i

Turn distribution

H

0.00

0.20

0.40

0.60

0.80

1.00

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

A
ve

ra
ge

 u
nc

er
ta

in
ty

 a
bo

ut
 w

ho
 h

as
 fl

oo
r

at
 a

ny
 g

iv
en

 ti
m

e

Proportion ot total number of turns of person i

Turn distribution

H

Figure 2.12: Average turn distribution.

2.3 Architecture

We discuss relevant concepts in the implementation of a group coordination architecture.

Navarro et al. [156] identify the following requirements for CSCW systems: support for

information sharing, communication, tailorability, and transparency of organization, time,

views, and activities. Among the many systems built to date, we can distinguish be-

tween architectures where computers and video enrich real-world media spaces [165], such

as CaveCat [27]; systems fusing virtual and face-to-face groupwork, such as the Digi-

talDesk [232], Clearboard [116], or the TeamWorkStation [117]; and conferencing

and collaboration based on networked computers [197]. The latter being our focus, it is not

clear to date where group coordination services should be deployed in the network protocol

stack to ful�ll these requirements, constrained by individual, group, system, and network

behavior. Previous coordination protocols have been implemented at the transport layer,

in the session layer as middleware component, or integrated into an application itself. The

number of
oors f to be tracked for a particular host is a function of the number of shared

applications a, the number of resources per application r, and the granularity g, at which

resource access is being controlled, f = a � r � g.

48

We distinguish between collaboration-unaware, collaboration-aware, and collaboration-

transparent architectures. Unaware systems o�er no intrinsic collaborative capabilities,

and require external mechanisms to tap into, �lter, and multiplex operations on shared

resources of the session. Aware systems o�er inherent collaborative functionality visible to

the user and are of limited use when operated stand-alone. Bentley and Rodden [23] discern

between view-level sharing on identical information with di�erent views, and object-level

sharing using replication for independent manipulation.

Collaborative systems can be tightly or loosely coupled [167]. Tight coupling presumes

explicit membership control of participants and conference control enforcing a formal session

style with
oor control, which is for instance desirable with IP telephony. Loose coupling

is based on a \light-weight" session model [76] and does not require explicit membership or

conference control to synchronize media and regulate interactions. This model, implemented

with theMBone conferencing tools [143], allows for anonymous, large-scale conferences, and

bene�ts from cross-media coordination mechanisms, since users want to see their activities

manifested in coherent responses by all tools. Mechanisms to bridge the gap, such as a

moderated blackboard for posting questions and stimulate interaction have been built for

the MBone [146].

2.3.1 Paradigms

At the highest level of abstraction, a prototypical collaboration environment contains �ve

components:

� An Orchestration Manager for conference or session setup, membership tracking (in-

vitation, joining, leaving) and teardown (OM).

� A Coordination Manager for exercising group coordination services such as
oor con-

trol on communication channels and network resources in the shared workspace (CM).

� A Workspace or Window Manager, which integrates the local, private workspace, and

the public, shared workspace, where the latter can be rendered in local, independent

49

views, or in synchronization with remote hosts (WM). The underlying information

base for WM may be local or obtain data from remote servers.

� One or more Shared Resources, such as an application or device (SR).

� A network interface linking the above components.

Figure 2.13: Coordination con�gurations: (a) Centralized; (b) Hybrid; (c) Distributed.

The CM may exercise control by intercepting messages sent between WM and SR, or

by processing control requests from the various nodes. For implementing group coordina-

tion, we have a choice of centralized or distributed coordination management, or hybrids

of both. OM and CM may be centralized, a hybrid of centralization and distribution,

or purely distributed, as depicted as in Figure 2.13. Darker-shaded hosts, in contrast to

light-shaded hosts, have an integrated WM and have the option of independent views. In

central sequencing, all changes to shared resources are funneled through a single host (\
oor

server"), with the bene�t of predictable delays, simple implementation logic, and consis-

tency. Pendergast [174] distinguishes between three types of central processing: terminal

linking, centralized data, and distributed data. Terminal linking yields strict WYSIWIS,

centralized data lets hosts obtain data through a central server, but process them locally,

and in distributed data all shared information is resident at the hosts' local storage and a

central node sequences all operations. The �rst and second solution o�er inherent consis-

tency, but incur high network traÆc. The third solution implies partial or full replication

50

of data in a federation of servers or hosts, and is the predominant approach for collabora-

tive systems, with the advantages of low network traÆc and superior response, but with

diÆculty in maintaining consistency.

In Figure 2.13 (a), all hosts sequence operations through a central OM , with hosts 1

and 2 accessing a resource directly with WYSIWIS, whereas hosts 3 and 4 use relaxed

WYSIWIS by employing a WM for independent views. In the hybrid approach (b), host

4 communicates solely through host 3 to access SR, whereby hosts 1 � 3 maintain their

own replica of SR and sequence exclusively through a central OM . In the distributed

case (c), hosts 1 and 2 possess partial information on a resource SR and are linked to

indicate exchange of information to mutually complete their picture of the resource. Hosts

3 and 4 access SR as independent objects, which exempli�es the special case investigated

also by Pendergast [174], where no special coordination mechanism is needed to correlate

state information, because resources can be manipulated synchronously without violating

mutual consistency constraints. In all cases, we assume for simpli�cation that OM contains

CM , e.g., when a session manager contains or interfaces to a coordination agent linked at

run-time with other coordination agents.

Most existing conferencing and collaboration systems can be subsumed under one of

these models. In a centralized scheme, all hosts tap into the same application and use a

single CM, with the shortcoming that hosts cannot be decoupled and depend on CM and

the application server as a performance bottleneck under high load and point of failure.

Centralized coordination incurs no integration cost. In a hybrid scheme, each host has its

own replicated information base coordinated through a central coordination protocol. Hosts

from the same local network partaking in a wide-area session communicate with a local

conference server through a local bus architecture, which attaches to another conference

server on the conference backbone. In a distributed architecture, CM, WM, and SR are all

host-individual, and coordination is peer-based using a conference bus, with the bene�ts of

exibility in session organization, load-balancing, scalability, and fault-tolerance. Several

systems with
oor control representing these paradigms will be discussed in Chapter 3.

51

2.3.2 Design Issues

We postulate henceforth a coordination architecture based on the following requirements:

simplicity of implementation and maintenance; scalability in the number of users and

hosts [196]; security with regard to the exchange of coordination information and data;

extensibility for new resources and session models; eÆciency in coordination, concerning

low latency and protocol state overhead; reliability with regard to failures of hosts, re-

sources, and network elements; persistence of coordination information at hosts despite the

ephemeral nature of
oors; and interoperability between heterogeneous platforms.

The maintenance and distribution of coordination state information should be partially

or fully distributed to avoid, for instance, the problem that a single
oor server becomes

a bottleneck and single point of failure for a session. Distributed session orchestration

also allows for continuation within partitions of a split session, in case that one or more

links between hosts fail. Session information should be logged at several hosts for the case

that disconnected sites resurface and attempt to rejoin a session, retrieving updates on

the collective session state from one of the active session partitions. Shared workspaces

should be asymmetric, that is, each host is allowed to maintain its own individual view on

the shared resources, but may synchronize itself a WYSIWIS state, if required. Session

updates, rather than
ooding the network, should be sent in increments between hosts,

encoding the di�erence in previous and current work states.

A hierarchical host organization and representation of the workspace allows for more

eÆcient naming, addressing, and state keeping of large sessions, and inheritance of globally

valid session attributes. A hierarchy models face-to-face meetings better, because users may

want to temporarily step out of a larger session to conduct a side-chat without having to

de�ne a new multicast group. Sessions should allow for various orchestration models, from

tight control to loose control, to cater to the need of registered, formal meetings and informal

meetings. Floor control can be applied in both orchestration styles and should take into

account the demanded Quality-of-Service in relation to the available service quality feasible

with current host and network conditions.

52

Despite a considerable body of work on
oor control, concurrency control, or access con-

trol in collaborative systems, there is no consensus or methodology on the implementation

and deployment of
oor control services. Ideally, coordination services would be based a

common structuring principle, such as a common dissemination and control geometry. Most

available literature treats
oor control as a black box service without providing details on

operation or implementation. The MCP protocol [238] uses a conversational abstraction

for
oor control on top of the transport-layer multicast protocol XTP [214]. The goal is to

achieve temporal and causal synchronization among concurrent
ows between multiple hosts

using a token-passing mechanism. On the other hand,
oor control has also been proposed

as a bridging component in call management [6], or as a session layer component [198], as

for instance in the conference control protocol CCCP [104].

Floor control may be centralized, while session control is distributed, or vice versa. In

contrast to this modular solution stands the monolithic approach of integrating
oor control

into the application itself, which is the prevalent solution for the majority of collaborative

systems, such as the collaborative visualization system Cspray [169]. We subscribe to the

view that the provision of coordination services such as
oor control as a middleware com-

ponent at the session layer achieves better
exibility and re-usability in comparison with

transport layer or application layer deployment. We refer to this modular architecture of

deploying
oor control as a sibling component with session control as \Floor Assignment

in Collaborative Environments" (Face). In Face, each host runs a
oor daemon enforcing

control over resources in the shared workspace and communicating with remote hosts on the

status of their
oors and resources. Figure 2.14 shows the layering of host-based services in

a networked multimedia system, with coordination services located between the application

layer and the media services and network support layer. Synchronization refers to playback

synchronization of media streams [141] and is attributed to the media layer, in contrast

to activity synchronization between users [9]. Our conceptual model of a group coordina-

tion architecture includes security and activity synchronization services, which cannot be

addressed within the scope of this thesis.

53

Figure 2.14: Group coordination architecture.

While
oor control handles coordination, session control keeps track of membership,

start-up and tear-down of the communication paths, and the use of compatibility issues

with particular media. Session control complements coordination mechanisms such as
oor

control and performs membership management [178], directory services [102], announce-

ment [101], invitation [103], and teardown. Integrated session and
oor control services

have been referred to as conference control [104]. Typical membership functions fall into

four categories: registration calls such as invite, initiate, join, etc.; modi�cation of status

and authorization; polling of information about the remote or local status; and termination,

including functions such as leave, withdrawal, or expel.

Floor control is often associated with tightly-coupled sessions, but sessions without

prede�ned membership such as panel discussions may need
oor coordination software as

well. Session control mediates between upper application layers, and relays requests down

to end-to-end services. It comprises the following tasks: initiation, pause, resume, and

stop of sessions. These are characterized by their purpose and a set of resources. Session

participants are validated and tracked via a directory based upon their group membership.

Basic membership support includes creation, joining, withdrawing, inviting, excluding etc.

by single members or whole groups. A session control protocol also needs to account for

concurrent membership in parallel sessions, switching, overlap, recursive establishment of

subgroups and collaboration across session boundaries. The group coordination mechanisms

54

put forward in this thesis assume communication based on message passing in a packet-

switched network.

2.3.3 Aggregation

We conclude this chapter by making the case for aggregated processing of coordination

information in a hierarchical host topology. This principle will be of use for the design of

eÆcient multicast-based
oor control and message ordering protocols. Group coordination

relates to multicast routing and reliable multicasting [162], because control messages must be

routed among hosts in the control tree built for managing session interactions. Failed control

directives must be retransmitted, similar to packet loss recovery in reliable multicast. Even

though more recent collaborative applications use the IP-multicast model for dissemination

of streams, this model alone seems not suÆciently powerful for the spectrum of distributed

multimedia applications.

A multicast tree is either a shortest path tree, which is a directed tree by one source

reaching all members of the multicast group, or a shared tree, which is constructed for

a group and shared by all sources. The multicast delivery tree is constantly pruned or

extended by a multicast routing protocol such as DVMRP, CBT or PIM-SM (cf. [112] for

an overview) re
ecting the current subscription state to multicast groups and the presence

of adjunct network resources. Multicast group membership is provided by a membership

protocol such as IGMP [74]. Source trees are suited for a scenario where one source incites a

long-lived transmission to other session members, and no further individual source trees in

the session must be built. For multimedia collaboration with frequently switching sources,

a shared tree is a more e�ective solution, with the shortcoming that delivery paths in the

shared tree may be suboptimal and a�ect the latency of continuous media.

Consider a scenario where three hosts from three di�erent multicast groups MG1 - MG3

must coordinate access to a shared resource they are contending for. Figure 2.15 depicts

a snapshot of the protocol operation in of telecollaborative session across a ternary tree

displayed to the right.

55

(a) (b)

S

MG1

MG2

MG3

A

C

MC

R

SW

MG1

MG3
MG2

A

B

C
FC

B

Figure 2.15: Snapshot of group coordination among multicast groups MG1 - MG3 and corre-
sponding dissemination tree.

The resource R under contention is a data grid with a shared telepointer, which can be

rendered di�erently depending on model assumptions and parameters given. For example,

it may display wind velocities, or a three-dimensional temperature �eld. Three multicast

groups of researchers, MG1 - MG3, work on this shared space, whose group aÆliation

indicates di�erent interest in the data. Among them, users A, B, and C from each group

form a multicast coterie MC, that is a subgroup, for example with a special interest for

wind data. With the standard IP-multicast model any wind data renditions made by user

C will not only be visible to coterie members A and B, but to the members of all groups.

Not only may receivers not be interested in such content, but transfer of rendition data

may also waste unnecessary network and host resources. One possibility for the researchers

in MC is to form an extra multicast group, but if many such intermediate results need

to be created, a more elegant and transparent method must be used to exchange interim

computation results. It is hence desirable to allow transmissions to subgroups of multicast

groups and for data to be subcast on a per-packet basis. For such highly interactive group

work, the per-source tree model would require hosts to join a new tree per turn, and

subsequently tear down the temporary multicast tree, which is impractical.

In an alternative model, a single shared tree is constructed in the beginning of a session

and hosts join the session by being added into the tree. When a host become
oor holder,

56

it transmits its data to its children, if the target hosts are located in its subtree, or to

its parent host, if the target is located elsewhere in the tree. Each transmission involves

therefore only as many hosts as the branching factor of the tree indicates. In case of stale

links or failed hosts, many heuristics have been proposed on how to reconstruct and optimize

shared trees. This motivates a re�ned intra-group addressability service to allow selective

multicast of control information and data to subgroups of large groups on a per-turn or

per-packet basis. The IP-multicast model lacks addressing information, by which elements

of multicast groups could confer with each other, without a�ecting the session as a whole.

A
oor holding host as a sender in a collaborative session could hence only address an entire

group. We discuss a novel approach that integrates results from work on extended multicast

services [136] with group coordination.

Attaching positional labels to nodes in a D-ary tree implies an additional storage cost

of log2D bits per level in a positional tree of N receivers and height logDN , i.e., lgN bits

are needed. Using 32-bit labels for designating sources and targets in message headers, up

to 232 hosts can hence be accommodated. Pre�x comparison is cheaper for nodes close to

the root due to shorter labels. The message cost to handle a CP is

CCP = creq + cresp + cupd (2.15)

consisting of the cost to send a request to a control node, receive a response, and multicast

an update on the new state. We compare the delay in a unicast, multicast, and aggregated

multicast communication model under full load (each node sends a CP), assuming that the

host processing cost for request, response and update packets is equal and normalized. The

average path length between nodes is assumed to be the same for all models. � represents

the individual processing, packetization and transmission delay for each type of packet.

In unicast, the coordination delay incurs (N � 1) requests, replies from control nodes,

and updates, where N is the current session size, i.e., CDuc = 3(N � 1)�.

In multicast, (N � 1) nodes send requests, and the control node multicasts one reply

and one update back to the session, thus CDmc = (N + 1)�.

57

0.00

200.00

400.00

600.00

800.00

1000.00

10.00 100.00 1000.00

Lo
ad

 (

m
sg

s)

Session size N

Load for various sessions, K = N/10

Unicast
Multicast

Aggregated Multicast

0.00

200.00

400.00

600.00

800.00

1000.00

10.00 100.00 1000.00

Lo
ad

 (

m
sg

s)

Session size N

Load for various sessions, K = N/10

Unicast
Multicast

Aggregated Multicast

Figure 2.16: Message cost for coordination with unicast, multicast and aggregated multicast.

In aggregated multicast, CPs are handled within multicast groups and only the root of

a group forwards a composite request to its parent, or responds to group-local requests,

if it holds the information locally. With K groups we have on the average G = dN
K
e

members per group, and per group there are G requests inside a group, K aggregated

requests sent to a control node from all groups, and one multicast response and update,

hence CDamc = ((G� 1) + (K � 1) + 2)� = (G+K)�.

Figure 2.16 shows the average cost to coordinate hosts in sessions up to size N = 1000,

clustered into K = N=10 groups, and with normalized transmission delay �. It elicits the

bene�ts of aggregated multicast coordination.

2.4 Discussion

Dynamic sharing of online work is a new paradigm with consequences for communication

and data processing that will become more apparent for the years to come. Applications will

increasingly o�er collaborative services, as can be seen by the current trend to make web-

58

browsers more interactive. Group coordination is a promising methodology for improving

cooperative behavior between users and agents to utilize distributed system components,

complementing group membership and group dissemination services. We discussed a formal

model of coordination, including relevant entities and their parameterization, a causality-

driven activity and turn-taking abstraction, and the design choices in implementing group

coordination services.

In the following chapter, we discuss
oor control as a central component in group coordi-

nation to mitigate contention in simultaneous creation, access and manipulation of resources

in networked multimedia systems. We will use the idea of aggregation to integrate
oor

control with tree-based multicasting.

59

Chapter 3

Floor Control

We understand
oor control as a technology to implement group coordination in collab-

orative environments, mitigating race conditions in concurrent usage of shared resources.

Distributed activities using continuous media and discrete resources are orchestrated with a

oor control mechanism. A prime example of a
oor control problem is turn-taking on the

audio channel to allow for smooth multiparty conversations. If everybody would be allowed

to take the speaker
oor, packets from di�erent sites collide and messages get scrambled.

Backo� and retrying, chaired control or mediation through other communication channels

are possible, but ineÆcient solutions to resolve such con
icts. Regulation of turn-taking in

electronic meetings is problematic, in particular for larger groups or communication across

long distances due to the delay in signaling
oor capture. A
oor control protocol ensures

that turn management is safe and live by arbitrating resource usage with
oors.

Controlling the
oor helps users to regulate and synchronize collaboration, gain more

exibility, engagement, and decisiveness on who is in charge in a session, promotes fair turn-

taking in resource access among session members, de�nes various degrees of formality for

meeting conduct, and promotes group awareness. Bandwidth may be used more eÆciently,

for instance, when video streams for passive participants are toned down and only the cur-

rent speaker's video content is transmitted at highest quality, establishing a user-originating

mechanism to throttle data
ows in session links.

Floor control is a complex subject because non-separable user, end-host, and network

issues need to be taken into account in design and implementation, considering scalability,

60

distributed state management, consistency and reliability. Previous work on
oor control

has either focused solely on user-interface issues, or tackled system-level issues based on

a unicast transmission model and limited choice of media. Existing descriptions of
oor

control protocols lack detail and analysis. Our goal is to develop a methodology for
oor

control which allows implementors and users of collaborative systems to make informed

choices on how to use coordination in group-enabled software. We comprehensively report

on previous work, summarize important concepts of
oor control, and provide a taxonomy

and performance analysis for the various paradigms in existence. Two novel protocols,

for direct-link, unicast networks, and for hierarchical
oor control are presented, where we

extend
oor control mechanisms to a multicast dissemination model.

3.1 Related Work

The core ideas of providing
oor control in computer-supported cooperative work stem from

work on turn-taking, as discussed in Chapter 2. A very basic rendition of
oor control is

integrated in text-based Unix conferencing tools such as talk for a chat session between

two parties, ytalk for 3-way sessions, and confer or joinconf for small multiparty chat

sessions. Turns are marked with the cursor alternating between the local window and remote

windows to mark the active writer. In confer, chat partners join based on the invitation by

the session initiator, and the name of the current
oor holder is displayed on all screens in

brackets. The
oor can be claimed by pressing the Enter-key and relinquished by entering

a blank line. Usage of these tools is limited to Unix systems, but similar tools are available

on any platform.

The NLS/Augment system [71] was an early text processing system in a networked,

multi-user environment, supporting multiparty collaboration in the form of �le-sharing,

email, and \televiewing". A gavel passing mechanism was conceived to \pass control back

and forth between workers", using multiple windows and replication of content from a users

terminal to other users' screens, and for \subsequent entry and departure of other conference

participants."

61

Forgie [78] discusses various concepts of activity coordination in packet-switched voice-

conferencing systems, inspiring Aguilar et al. to propose a distributed voice-activated

collision-sensing algorithm for the Emce teleconferencing system [5, 82, 83]. Emce sup-

ports a free-for-all
oor policy in a local area network assuming ample bandwidth and

low delay, allowing for backchannel
oors. A derivative of this idea, an activity-sensing

oor acquisition strategy, has been proposed by Garcia-Luna et al. [84, 175] for LAN-based

telecollaboration, where sites backo� from claiming the
oor when they perceive remote

activity. Based on this design, Craighill et al. [41, 42] implemented the task-activated
oor

control algorithm Comet in the collaborative engineering system Ceced, where X-server

events are monitored and intercepted, when handling shared applications resources. With

this mechanism, non-collaborative applications have to be altered only minimally to equip

them transparently with groupwork capabilities. The paper also put forward ideas on con-

trol with �ner granularity and the combination of policies, role-based authorizations, and

multicast with
oor control.

The XEROX Colab [211] system was an experimental meeting room designed to sup-

port collaborative processes in face-to-face meetings with collective sketching, presentation

planning and proposal planning among two to six persons. It was equipped with a LAN

of workstations and a large touch-sensitive screen, and a coordinated multiuser interface

provides consistent presentation of images of shared information to all participants. Such

totally synchronized views are referred to as the \What You See Is What I See" (WYSIWIS)

metaphor. A relaxed version of WYSIWIS allows users to obtain individual perspectives on

the same content, di�erentiating between public and private windows. Four versions of con-

currency control on the Colab database were considered: a centralized model; a replicated

model, where all users maintain a local cache of shared records and must attain ownership to

make changes; a cooperative model, where participants use verbal \voice locks" to prevent

inconsistencies in broadcasting updates of their local records without synchronization; and

\roving locks" to create a working set of locks on shared data. Due to inherent delays in all

versions in the propagation and reception of lock updates, a dependency-detection model

62

using timestamps was considered as well, which implements optimistic concurrency control

and depends on semantic knowledge of resource dependencies to recreate consistency.

Greif and Sarin discuss
oor control for text and graphics-based scheduling applica-

tions [93], distinguishing between automatic and manual
oor-passing and proposing a

reservation-based
oor control scheme and the use of multicast. The importance of a smooth

conference phasing out is stressed, because typically not all participants leave a conference

at the same time. Abdel-Wahab [1] discusses a centralized drawing tools with
oor control

implemented as a chalk passing mechanism between a session server and conferees. Lantz'

V-Conf system [131] proposed
oor control to interface with a conference agent mediating

I/O between shared applications. A conference front-end (user interface and invocation of

shared applications), conference agent (mediating I/O between shared applications) and a

conference manager (
oor control and other synchronization) are introduced as three pro-

cess types. The system lacks support of voice and long-haul networks and its
oor control

mechanism can lead to visual inconsistencies between connected sites.

The Rendezvous architecture and language [172] were conceived to support in the

implementation of applications in which multiple parties can manipulate shared graphics

objects at the same time, such as a tool for the collaborative design of user interfaces. The

authors argue that the centralized \abstraction-link-view" architecture of Rendezvous en-

ables simpli�ed concurrency control and consistency, and keeps synchronization problems

among widely distributed users manageable. Enforced turn-taking between users is con-

sidered as a basic form of automated
oor control, consisting of a mechanism to select the

next
oor-holder and the ability to enforce control.

Crowley et al. [43] discuss the MMConf architecture, which uses
oor control to or-

chestrate telepointer usage in a replicated whiteboard application. Sequence numbers order

distributed activities, which are logged and can be replayed in the case of failure. Each

application has a
oor manager, which communicates with other managers about
oor

passing. Applications can refuse to relinquish the
oor, and
oors in transit may trigger

redundant retransmissions of requests, which may result in deadlock and unfairness.

63

Various other experimental conferencing environments have been developed o�ering a

notion of
oor control, such as Cantata [36], Mermaid [230], Rapport [6], Monet [210],

the fault-tolerant Nebula system [158], the Joint Viewing and Tele-Operation System (Jv-

tos) [48] for shared work with telepointers, Berkom [11] (which o�ers collaboration ser-

vices with choice of di�erent service policies),Highend [168] for aerodynamics visualization,

Argo [81], and Shastra [14]. The collaborative CAD and telemedicine system Shastra

employs a two-tier
oor control mechanism based on token-passing, which supports access,

browse, modify, copy and grant permissions, and resolves contention on hot-spots with a

�rst-come-�rst-served policy. Distributed
oor control has been implemented inMermaid,

where duplicated computations and consistent replication may be costly, and both imple-

mentation and run-time monitoring of a
oor control system can become very complex.

The \UnOÆcial Yellow Pages of CSCW" [144] list various systems featuring
oor control,

but the majority lack scalability, wide-area scope, and multimedia capabilities.

Meta-applications to create collaborative systems, such as GroupKit [188] or CoSara

[220] assist in rapid-prototyping of graphics-oriented conversational applications. Group-

kit features a replicated run-time architecture handling distributed processes, overlays for

integrating groupware elements such as telepointers, and an interface to adapt to the com-

munication needs of a group-aware application. GroupKit lacks multimedia capabilities

and
oor control is regarded a user interface concurrency control issue exempli�ed with

telepointers [91].

The earlyMBone tools [72] vat and rat for audio conferencing and vic [150] for video

conferencing were the �rst e�orts to deploy real-time multimedia collaboration services at

Internet scope. The tools are cross-coupled and feature coordinated start, suspension and

termination, and automatic source selection based on voice-activation. Listening users are

asked to mute their microphones for reasons of echo cancellation and bandwidth conser-

vation. The QuestionBoard [146] supplements manual
oor control with a moderated

black-board mechanism, usable for larger seminars, where users to post questions and stim-

ulate interaction. Recent research onMBone tools [108, 149] and by the MMUSIC division

64

of the Internet Engineering Task Force (IETF) focuses on protocol support for light-weight

conferences [199] that are pervasive on the MBone. The Conference Channel Control

Protocol (CCCP) is designed to scale from tightly coupled groups to large scale sessions,

and conceptualizes
oor control as a modular unit interacting with session control across

a conference bus, but the CCCP speci�cation lacks details on the
oor control protocol.

The Simple Conference Control Protocol (SCCP) [29] outlines a token-based
oor control

mechanism allowing for shared, concurrent
oors in a centralized architecture, however, this

and other e�orts [167] are work in progress and lack detailed speci�cation.

The Jets system [206] taps into the current need to meet on the web with real-time

interactive meeting services, and features a web-centric Java-based synchronous collabora-

tion environment. Floor control is implemented as a locking mechanisms to prevent activ-

ity collisions in the shared workspace. In the ITU T.120 [224] standard for real-time and

audiographics conferencing, designed for conferencing, document sharing and whiteboard

activities in circuit-switched networks, centralized multipoint conferencing units (MCU) are

used to \re
ect" media streams between sites and select the current speaker.

CSpray [169] is a collaboration-aware visualization system implemented within the

UCSC Reinas project [189]. It is designed for small groups to jointly explore real-time data

from a network of environmental sensors for geoscienti�c research. The shared workspace

consists of \spray can widgets" used to render data from various spatiotemporal views.

Workspaces are asymmetric, i.e., each user can maintain an individual local view on the

common renderings in the workspace. Only updates between di�erent data set renditions

are broadcast via UDP to participating sites in a di�erence scheme and in compressed

format for the sake of eÆciency.

Visualization data can be fed into CSpray at run-time from a real-time database and

maintained as a partial replica independently by each host. The
oor for a spray can is

obtained by clicking on the spray can icon and specifying a spray mode. Multiple cans are

allowed on the shared visualization space and are distinguished by name tags of the active

users. CSpray has been demonstrated in live three-way sessions during the Supercomputing

65

Figure 3.1: Snapshot of CSpray - collaborative visualization of remote sensing data. The spray
can icon is used by a user to grab the
oor for a speci�c rendering mode (from [169]).

conference in San Diego in December 1995 using FORETM ATM backbone switches. A

snapshot of a two-party collaboration is shown in Figure 3.1.

Figure 3.2 shows a screenshot of the web-based interface to Ccam, implemented as a

test application for
oor control on remotely controllable instruments, in our case a web-

attached camera. The camera served as an end-device for demonstrating video streaming

among wireless Internet gateways. In contrast to the many webcameras available to date,

the idea behind Ccam was to establish more organized patterns of multiuser access to the

camera, using a combination of C code, Perl, Java and CGI scripting. Ccam has been used

in a GLOMO project demonstration within the WINGS testbed since 1997, controlling the

camera live from multiple hosts on the Eastcoast and Westcoast.

Methods to mediate resource contention at the user interface level have been discussed

for example by Ellis and Gibbs [66]. Greenberg [90] compares six
oor-control protocols

from earlier work, not di�erentiating between policy and mechanism: a free-
oor scheme,

a preemptive scheme, an explicit release model, a round-robin scheme, a central modera-

tor, and pause detection, all selectable by user choice in the personalizable Share appli-

cation. Agrawal [4] discuss the management of concurrent activities in database-centric

66

Figure 3.2: Snapshot of Ccam - collaborative camera control through the World Wide Web.
Clicking on elements in the navigation rose grants a user the
oor, when available, for the
duration of the camera movement.

collaborative environments. A conceptual integration of
oor control within intelligent

agent architectures has been proposed by Edmonds et al. [65]. Yavatkar [238] described a

token-based
oor control mechanism in the MCP protocol framework, which implements

a conversational abstraction for synchronized exchange of multimedia
ows on top of the

reliable multicast protocol XTP. Hilt and Geyer [107] discuss
oor control requirements

for distance learning environments and de�ne a collaborative services model based on work

67

by Dommel and Garcia-Luna [54]. Trehel [221] analyzes
oor control as a request synchro-

nization problem for a distance learning session, taking into account the order of requests

and the role hierarchy between teacher and students. Guyennet et al. [100] present a con-

sistency management protocol for CSCW applications with shared memory, proposing a

token-based mechanism to structure the sharing process. Kausar [124] presents an overview

on the marriage of
oor control services with reliable multicast.

3.2 Characteristics

In this section we delineate
oor control from other control paradigms to manage distributed

concurrent resource access, discuss control mechanisms vs. policies, Quality-of-Service adap-

tation observing control state information, and consider user interface issues.

3.2.1 Related Control Paradigms

Floor control has counterparts in concurrency control used in database system [33], message-

passing mutual exclusion schemes [209] used in operating systems and distributed systems,

and access and version control such as Unix rcs used for �le management in networked

operating systems. Note that
oor control mechanisms solving the multiaccess problem in

groupware are occasionally referred to as concurrency control [66, 91].

Traditional database concurrency control resolves update con
icts on discrete database

records that cannot be shared directly or in real-time among users, using a transaction model

to serialize and carry through, or rollback, operations observing atomicity, consistency,

isolation, and durability (ACID) properties. A large number of optimizations and variations

on transaction management exist, with regard to locking mechanisms, multi-level updates,

consistency management, and observation of domain semantics. Barghouti [20] presents a

survey on advanced concurrency control methods designed for long-lived transactions and

increased user control for collaborative CAD or CASE systems.

Mutual exclusion [129] solves contention problems in resource allocation, in a manner

opposite to cooperation problems solved by producer-consumer schemes. Processes con-

68

tending for the same resource must be synchronized by semaphors, monitors or message

passing to prevent two processes executing simultaneously in the critical section. However,

in contention, a process must be able to make unlimited progress when others fail, while in

cooperation the progress of one process depends upon the progress of another.

Access control as protection management [130] for distributed �le access is tailored to

non-interactive storage and sharing of �les. Shen [202] proposed permission hierarchies and

�ner lock granularities as extensions for collaborative work, but such re�ned access control

is limited to discrete �les. Similarly, version control uses a di�erencing scheme and locking

technique for concurrent editing, coherency maintenance and economic storage, placing a

temporary lock on a �le edited by a user and logging the di�erent branches of a �le's

history. It has been applied for example in a hypertext-based notecards system [222], or for

groupwork in a database centered context [123].

On the other hand,
oor control supports interactions rather than transactions, and tar-

gets cooperation problems. It mediates direct and open-ended computer-based interaction

among two or more users using continuous media or accessing discrete data objects with

variable granularity. Such multimedia resources are not subject to an underlying ACID

database or �le system transaction semantics. Activities can be carried out pessimistically,

or optimistically without the possibility to undo [176] operations. Control messages are

passed between hosts and
oor servers to implement ephemeral, distributed resource ac-

cess. A
oor-controlled access semantics includes transmit, mute, replay, modify and

other operations on continous media, contrasting the classic notion of read-write and write-

write con
icts, as they must be mitigated for databases with a predictable access semantics.

Operations on multimedia data may be not commutative and are not serializable as in con-

currency control, since worksteps must be carried out interleaved. Floor-mitigated access

may be long-termed and
oor scope can be aligned with a session, application, its compo-

nents or granules. In analogy to mutual exclusion, a
oor control algorithm must be capable

of allowing multiple parties to gain access to the same resource, if desired, and tolerate node

or resource failures in a session without loosing operational integrity.

69

3.2.2 Control Mechanisms and Policies

Floor control protocols can be dissected into the mechanism handling control message dis-

semination, and the user-oriented policy [30, 43, 203], which determines the reordering,

preemption, and scheduling rules on how
oors are logically assigned. A separation of

these concepts permits adoption of new policies without altering the mechanisms used. A

mechanism may imply a default policy, and not all policies can be instantiated for a given

mechanism. Mechanisms and policies impact responsiveness, fairness, and resilience of
oor

control. Users agree on the
oor either by signaling each other with signs or words, or in-

terpret the absence of signals and activities of partners as permissions to acquire the
oor.

Accordingly,
oor control mechanisms are either based on the explicit exchange of data or

control tokens signifying
oor state changes in order to seize control over a resource, or use

implicit assertions in local variables at each host to assume permissions to seize a
oor.

Mechanisms

We distinguish between the following mechanisms to handle the low-level processes to gen-

erate and stream requests among users: Incoordination permits users to negotiate access

patterns in a free-for-all policy, where no cues or tokens are provided by the collaborative

system to help users coordinate their activities. Social rules may result in order or anar-

chy. Activity sensing forces a host to give priority to activities perceived at remote sites,

assigning the
oor to the sender and blocking locally originating data. If no remote activity

is being perceived, the local site assumes the
oor, allowing local activity. Contention for

the
oor is resolved through randomness of
oor capture events, i.e., if two sites claim the

oor at the same time, both must stop requesting, back o� and restart their request after

a random waiting period. This paradigm is based on channel access mechanisms such as

Carrier-Sense-Multiple-Access [25]. The drawback of this strategy is that hosts with fast

connections are likely to acquire the
oor more quickly and often and may block resource

access. In contrast to schemes using explicit
oor tokens, activity sensing is solely based

70

on contention and has no factual notion of
oor control, because a host never attains the

exclusive right to be the only host accessing a resource.

In token passing,
oors are explicitly represented and acquired with a
oor token, which

is passed among session members similar to \gavel-passing" in face-to-face meetings. Con-

tention can be resolved with token passing using the data channel to send control signals

to coordinate activities. The order of passing may be determined by the actual physical

network topology, e.g., a ring topology, the logical session topology and a prede�ned sched-

ule such as round-robin, or a request-reply dialogue among session participants. In token

asking, or token fetching, the
oor token is not automatically passed within a session, but

must be acquired from and returned to a coordinator node. In
oor polling, a coordinator

node o�ers the
oor token to session members in a sequence re
ecting a chosen
oor policy.

Explicit mechanisms use timestamps or sequence numbers to mark the request or grant time

for a
oor, de�ning an order in which requests are satis�ed. Two-phase locking establishes

oors as locks on shared documents in a growing phase and releases them after activity

completion in a shrinking phase, which prohibits acquisition of new locks. Many variations

on this locking mechanism can be borrowed from concurrency control [24]. In time-slot

allocation, turn time is divided into equal time slots and users attempting to gain the
oor

must do so in one of these time-slots. An allocation of time-slots for
oor acquisition in a

round-robin fashion is equivalent to statistical time-division multiplexing. The drawback

of this mechanism is that open user interaction can generally not be modeled with discrete

time-slotting.

In blocking, system processes representing a collaborative work thread are prevented

from progressing according to a session-wide
oor control state, which is explicitly signaled

among sites. In reservation, hosts may specify resource access times and quality in a

allocation period, and are granted resources according to order of arrival and availability.

Reservation requires a separate control channel to reserve resources apart from the data

channel and is not suited for spontaneous interaction, where resources must be allocated on

the
y. Versioning is an optimistic scheme based on �le locks, used for concurrent document

71

access and archival, but not applicable for continuous media. Dependency detection permits

concurrent document modi�cations and recreates consistency based on given underlying

data semantics [211], but is also not usable for real-time media. Users may also proceed with

modi�cations on replicated resources and subsequently vote on the adaptation of changes,

which is also limited to static documents.

Policies

Floor policies determine user access based on criteria such as the origination or arrival time

of a request, the desired Quality-of-Service, the average waiting time in a queue, the order

by which users have previously been serviced, a priority value, or a method to manipulate

resources within the user interface. Boyd [30] argues that policies depend on the degree of

interaction required, i.e., automatic vs. manual input in control, the user roles, and the

granularity and duration of control. An object-speci�c \fair dragging" policy is proposed,

where a user can obtain mutual exclusive control over a resource object only while holding

the mouse button over the object. Fair dragging quali�es as an interactive, uniform, �ne-

grained, and short-term policy. Crowley et.al. [43] distinguish between four policies: no

oor; implicit request and grant; explicit request and implicit grant; and explicit request;

explicit grant. All are user-interface centered.

We propose a re�ned model of policies, taking into account queuing and preemption

or requests. Policies are either explicit, requiring a distinct action or signal from a user

to impact the control mechanism, or implicit through observation of system events and

conditions. We also distinguish between policies enacted by users through the graphical

user interface (GUI), versus host-enacted and network-centric policies. In chaired control,

a speci�c host is elected as permanent moderator over speci�c resources in a session, acting

as arbiter over
oor assignment. Roving control passes the privilege to arbitrate among

session members, e.g., by equating the
oor coordinator FC with the
oor holder FH and

requiring users to address
oor requests to the current FH. Task-oriented control assigns a

oor to execute one or more steps to conclude a task and revokes the
oor automatically at

72

completion time. Activity-oriented control uses speci�c keys, voice activation [77], movement

of objects, gestures, or other input to trigger a
oor handover. Timed control de�nes a

duration or timeout on a
oor, measured by a logical clock, system clock, or session events.

Scheduled control passes
oors among participants according to some agenda, such as

round-robin, varying a token passing order de�ned by an underlying mechanism. QoS-based

control takes into account the Quality-of-Service demanded by a user, giving for instance

preference to service requests that require less bandwidth. Voting-based control [86] uses a

consensus procedure among hosts to determine the next
oor holder. Election-based con-

trol [85] lets users draw a ticket de�ning a service order from a master site and receive
oors

in according sequence, which can be varied with a lottery-based allocation [228]. In queued

control, multiple
oor requests are placed in a waiting bu�er and serviced according to a

queuing policy, such as Least-Recently-Served, Least-Frequently-Served, First-Come-First-

Served, or Shortest-Task-First, if the time to execute tasks can be anticipated. Timestamps

or sequence numbers attached to
oors can be used as criterion to determine a service

schedule. Since sequence numbers are not unbounded, numbers older than a threshold are

recycled to avoid unintended wrap-around. Finally, in
oor brokerage, each user may bid

on resources allocated by a resource broker and spend currency for the usage of a resource,

where less aggressive resource consumption may gather merit credits.

In the absence of a service policy, a \free for all" or no
oor scheme permits resource

access on a �rst-come-�rst-served basis with the risk of con
ict. Speci�c policies may be

appropriate for certain resources, but ill-suited for others, and hence be adapted to a given

interaction modality. For example, a prede�ned ordering scheme is suited for instrument

control, but not for unpredictable turn-taking in conversations. The size of queues must be

limited relative to the session size, since it does not make sense to allow a long backlog of

requests and hence large delays in interactive work. Policies must be fair, i.e., allocate
oors

to session members evenly and consistently, in relation to the session purpose and user roles.

Di�erent policies are used to manage di�erent resources. The choice of a combination of

mechanism and policy depends on the resource. For instance, an audio channel with few

73

users is self-moderating and has no notion of consistency, whereas larger sessions and a

combination of audio with documents enforces synchronization constraints. In the next

section, we present a solution to integrate
oor control in the process of user-speci�ed

Quality-of-Service (QoS) tuning.

3.2.3 Quality-of-Service Mapping

In a large number of collaborative multimedia tools developed for the Internet, users can-

not specify QoS requirements in access and presentation of resources. Alfano and Sigle

developed a model [10] to integrate user-level and system level QoS-control in collaborative

environments. Amir et al. [12] discuss the Scuba protocol, which implements a feedback

scheme on media consumption based on discovery and adaptation to receiver interest. Floor

control input can help the mechanism decrease the convergence time to ready the next band-

width partition. Scuba augments
oor control because media streams can be throttled in

accordance with who holds the
oor in a session, achieving better network utilization. We

discuss how
oor control can be intertwined in the QoS negotiation or renegotiation process,

since QoS requirements for users are likely to shift throughout a session depending on their

work focus. Speci�cation of QoS requirements describes user interest for a speci�c media

quality in isolation, and in relation to the other media in use. Furthermore, individual

QoS choices may impact the reception and presentation QoS of other users, requiring a

mechanism to establish collective choice for QoS parameters and for combined media qual-

ity characteristics. An abstraction of layered QoS mapping of user requests to resources is

shown in Figure 3.3.

In order to merge QoS tuning under multiple constraints with
oor control, we charac-

terize the QoS for each resource as a vector

Q� = (�1; �2; : : : ; �l) (3.1)

74

Tuning

QoS

Mapping

QoS

Equipollence

QoS

QoS

Adjustment

Resource Abstractions

Floor Assignment
Cooperation Primitives
Activity Tracking
Request Reordering

Session Orchestration
Membership Management
Connection Control
Recovery

Application
User Interface

Consistency Management
Object Repository
Codecs

Transport Layer
(Reliable Multicast)

Configuration
Control/

Data

Figure 3.3: QoS mapping with
oor control input.

where � = fV ideo;Audio; Image;Graphicsg denotes the media type and �i(�); i = 1; : : : ; l,

represents a list of media-speci�c QoS attributes. Table 3.1 depicts a list of possible at-

tributes for generic media types.

� �i(�)
Audio Samplerate, samplesize, lossrate, delay, �delity
Video Framerate, framesize, codec, color, resolution, jitter, delay
Image Size, resolution, color, codec, compression
Graphics Size, dimensionality, resolution, colors, format

Table 3.1: Select QoS characteristics for various media types.

We de�ne the characteristic QoS (cQ) of a resource R as

cQR =
lX

i=1

!i�i (3.2)

where !i represents a weight factor for each media attribute determining the quality level for

each attribute, such that
Pl

i=1 !i = 1. Depending upon the application type and performed

75

tasks, users' expectations may focus on high throughput (e.g., a high video frame rate) or

low delay (e.g., for audio), and accept tradeo�s such as a certain degree of lossiness or jitter.

This allows for a modular, normed representation of di�erent QoS for all types of resources

and fast evaluation of QoS conditions. The actual characteristic Qa in an active multimedia

session is monitored by a background process correlating the current values �ai with current

host and network conditions such as CPU load and throughput. Qa is then compared with

the QoS Qd required by the session speci�cation, or demanded by the user, resulting in the

feasible quality Qf , where

Qf = Qa �Qd (3.3)

If a parameters �f > 0, the resource is underspeci�ed and can be scaled up [213], i.e., the

user asks for less than the QoS mapping function is able to guarantee, and a
oor request

on this resource can be satis�ed with the demanded media quality. Otherwise the
oor

request cannot be met and must be scaled down, with the option to discard the request or

present a subset of attributes in Qf to the user asking for this
oor for this resource, to

adjust the bias for the media attributes accordingly. The feedback process between system

and user requires that the parameters for attributes are percolated up to the user interface

and presented in an intuitive way. This process of cooperative media scaling based on

QoS speci�cations represents a tangible interface for users to �ne-tune their cooperation in

relation to each other, as well as host and network conditions.

3.2.4 User Perspective

Few end-user studies have been conducted on live interaction, constrained by the available

hardware and collaboration technology. Consequently, little information exists on how to

tailor coordination software and collaborative interfaces to end-user needs. User interaction

relies on and is strongly a�ected by the initiation and enactment of group coordination,

as well as the dissemination and presentation of control information. To date, no guide-

lines exist on how to develop collaborative user interfaces. Group coordination is a�ected

by technical aspects such as heterogeneous hardware or multimodal interfaces, as well as

76

sociological aspects of interaction such as culture and group dynamics [96]. Hence human

factors plays an important role in the design of group coordination systems. It is primarily

the addition of various user dimensions in the interaction process that sets
oor control

apart from concurrency control.

Interface

User interface design is more complex, because local and remote information, private and

shared, must be condensed and represented in a way that does not overwhelm users, and

manifests awareness and presence in live interaction. \Every access to every (shared) object

should be checked for current authority" is the axiom of total mediation [202], however, it

is unclear how tangible or transparent
oor control mechanisms can be made available to

users without creating a notion of intrusion, obstruction, or serialization constraints on

joint tasks that may lead to rejection of such a mechanism. Users should have the option to

activate or deactivate sharing on resources at various levels of granularity, based on roles,

capabilities, and authorizations, collaborate anonymously, receive updates on activities of

collaboration partners and resources, and be able to poll the
oor control status for local

and remote resources. Furthermore,
oor control should be con�gurable at run-time, and

allow for collaborative undo [176] or redo based on the collaborative history for reversible

or replayable activities.

User interfaces should integrate local and remote views, in public and private windows

on the local desktop and provide a notion of panoramic view on the shared workspace.

Direct manipulation \WIMP" (windows, icons, menus, pointers) interfaces are not ideal

for this purpose, because they provide a
at metaphor for three-dimensional workspaces

and clutter the desktop with icons and windows. They are also ill-suited for collaboration

across wearable platforms, where users cannot handle high cognitive load in the interface

in order to manipulate data. Multi-scale interface [80, 184] which allow users to navigate

and zoom within a three-dimensional rendition of the shared workspace, may evoke better

focus and a spatial awareness to shared activities. Supplying a feedback mechanism on

77

current
oor activity in relation to resource activity permits use of the reciprocity rule [201],

which, translated into the CSCW context, states that local-to-remote activities should result

in a remote-to-local feedback. Local and remote workspaces, in their entirety or with

regard to speci�c resources, should be independently viewable by users, or displayed in

synchrony if needed. Ultimately, users judge a protocol by its relevance with regard to

improved productiveness and ease of use, which should headline design e�orts for
oor

control protocols.

When a user initiates or joins a session,
oors for each available shared resource are

created. A control mechanism must also accommodate the ad hoc introduction of new

resources in the workspace. State information for the shared resources is disseminated to

other session nodes or a
oor server. In the distributed case, hosts may achieve consistency

by exchanging states directly with all members in the multicast group comprising a speci�c

resource, or through a di�using computation, where each node communicates only with its

direct neighbors. During session conduction, coordination primitives such as
oor requests

are multicast to the respective groups, querying and updating their local state tables. A

user should be able to obtain information on the local
oor state table and updates through

the GUI. The
oor control protocol must ensure that
oor requests and transfers do not

cause deadlocks, starvation of a user, or unfairness.

When a resource is removed from the shared space, the adjunct
oor is removed. In case

that a user withdraws or a host fails, orphaned
oors for resources located in the network

or a di�erent end-host must be reassigned. A
oor control protocol must also adapt to the

eventual loss of a FC or FH and swiftly shift roles to other users using, for example, an

election mechanism. A split session may continue, if orchestration and coordination within

the session partitions are consistent and users choose to not abort the session. Session

mergers must also be accommodated by the control protocol joining control tables and

recreating consistent state within joined multicast groups.

78

Deployment

Floor control should be transparent in function, but tangible in status, using multimodality

in input and output on control states. For instance,
oor requests can be activated with

a data-glove gesture, voice, or by simply pressing a mouse button, and feedback on
oor

states can use color, sound, icons, or haptic feedback. Cognitive cues such as transparency

or color in the visual representation of a shared resource are helpful to indicate its current

oor state: an opaque or green rendition of a widget could depict a locally held
oor, a

light-shaded or yellow rendition indicates that a
oor is requested by a remote site, and a

transparent or red object icon signi�es that
oor is held by a remote site. Auditory cues can

also be used as support, and pointing on a locked resource could hence trigger an auditory

signal to depict the sharing status.

A common solution to mark multiple
oors for the same visual resource, e.g., tele-

pointers, is to tag them with name labels or colors identifying their holders, although this

approach is only practical for small sessions due to limited screen real-estate. The GUI must

mark or block a resource, whose
oor is in transition to a new FH, to avoid inconsistencies

or multiple assignment of the same
oor, e.g., by framing a resource object yellow or red.

Floor policies should not depend on speci�c user interface modalities or properties of a

speci�c host platform, because GUI design and hardware speci�cs are subject to constant

evolution. Floor states can be coupled with window states, e.g., the iconization of a window

could disable all
oors for resources accessible through that window.

The main advantage in making
oor control a network service lies in rapid development

of collaborative systems, by providing an application-programmer's interface or library of

oor management routines, and gaining a universal control infrastructure, across which

applications can coordinate each other. Table 3.2 summarizes the calls that applications

may use to interact with a
oor control protocol, handling a speci�c
oor F for a resource

R of user U in a session S.

79

Call Semantics

AddFloor add template for F to active
oors
AllFloor display all active
oors for R, U , or in S
AssignFloor assign F to another U without request
CancelFloor stop request for F
CreateFloor bind new F uniquely to R and U
ExpandFloor enhance scope of F to multiple objects
FreezeFloor freeze usage of F on R
GrantFloor grant F for R to U
TrackFloor display collaborative history for F
InfoFloor query current attributes and usage state for F
KillFloor eradicate active
oor(s) for speci�c R or U
PauseFloor set active F idle
ReleaseFloor free F after turn completion
RelinquishFloor give up F after revokement
RemoveFloor remove inactive F
RequestFloor request idle or used F and enter queue
ResumeFloor reactivate sleeping F after idle period
ResetFloor reset
oor attributes for F , U , R, or entire session
RevokeFloor force release of F from U
ShrinkFloor reduce scope of F to fewer users

Table 3.2: Floor control API primitives and functional semantics.

3.3 EÆcacy of Floor Control Protocols

We propose a taxonomy of
oor control protocols based on their operational principles, and

compare their performance (\eÆcacy") taking into account user behavior and generic system

properties. The performance is correlated with the responsiveness and scalability of various

oor control mechanisms by taking into account the processing overhead encountered per

turn. Based on our results, we make the case for hierarchical
oor control, operating on a

control tree, whose logical topology resembles the backbone reliable multicast tree and the

actual underlying multicast routing tree. Our objective is to provide a new methodology

in the evaluation of coordination protocols, and to explore new avenues in
oor control

scalability through conceptual integration with underlying multicast transport strategies.

3.3.1 Taxonomy of Floor Control

Three properties forming the operational pillars for a
oor control protocol are: (1) the

random or scheduled access to resources, characterized by the mechanism and node topology,

80

by which
oor information is probed or relegated via directives between nodes; (2) the

centralized or distributed establishment of control among the nodes in the session; and

(3) the policy, by which
oors are commonly processed among the nodes. Property (1)

is the major design decision for a group coordination protocol, and determines, which

control and logical roles as well as policies are established in a session. This property

lays the foundation for the taxonomy shown in Figure 3.4. Known paradigms of
oor

control protocols are divided here into two classes: Random-access Floor Control (RFC) and

Scheduled Floor Control (SFC) protocols. RFC protocols lets users contend for the shared

resource by sensing its status remotely before or during resource access. In RFC protocols,

users contend for the opportunity to attain the
oor for a shared resource. SFC protocols

use token passing, reservations or polling as access mechanism in a session. A dashed line

shows a protocol whose performance will not be discussed in this paper. This taxonomy is

not exhaustive, but serves as a �rst attempt to characterize predominant solutions on
oor

control.

Random-Access

Social Activity
Passing

Reservation

based
Feedback

Mediation
Token

Incoordination
(RSF)

Polling

ImplicitDirectly
Connected

(STD)

Tree-

(STT)(STR)

Ring-
based

Sensing
(RAS)

(RSI)

Floor Control

Scheduled

Figure 3.4: Taxonomy of
oor control.

RFC protocols are based on the concept of sensing the status of a remote resource,

which can be accomplished either by users tracking each other's activities through the user

interface, or by the system, sensing the state of an application, host, or network for local

and remote activities. The global
oor state is marked with assertions on local variables

and no token entity is explicitly exchanged as placeholder. RFC schemes are inherently

81

contention-based, because nodes must actively compete for a
oor. The collective state

of local assertions must be kept globally consistent. Continuous sensing of many remote

resources' states, either by man or machine, can be costly, and there is a higher likelihood

of collisions due to network latency or lack of coordination.

In contrast, SFC protocols rely on the exchange of a unique and explicit
oor token,

with nodes either being polled by a coordinator node for pending control messages, or with

the token being passed in the order prescribed by the logical geometry of the session. The

uniqueness of the token guarantees exclusive usage of the
oor. Resource contention is hence

dispersed by regulated
oor capture. Control directives are used to request, deny, reserve, or

grant a
oor. Using explicit
oor tokens does not mean that users have to make a conscious

e�ort to signal reservation and exchange of such tokens. Rather, the
oor control subsystem

orchestrates these electronic placeholders as a form of concurrency control, although users

can in
uence or modify system decisions. SFC comes in two
avors: nodes can proactively

send control messages to \ask" for the
oor, or they can wait passively, until the
oor

is being \o�ered" by polling or passing through. A shortcoming of SFC schemes is the

cost incurred in tracking
oor tokens and ensuring their uniqueness and authenticity. SFC

schemes generally operate on a speci�c infrastructure such as a ring or tree, which logically

organizes the session.

Figure 3.5 shows a prototypical call sequence for two users U1 and U2 communicating

with a
oor coordinator FC, assuming that U1 has precedence over U2. In RFC, using

implicit
oor control, REQ (request) equals \sense resource state", GRT (grant) equals \ac-

tive on resource", WAIT equals \pending", ACK (acknowledge) is equal to con�rmation of

user activity through an external indicator such as a busy-
oor icon, DNY (deny) correlates

with \busy", and REL (voluntary release) and RLQ (forced relinquishment) is equal to \free

resource". First, U1 requests the
oor from FC, which grants it after checking whether the

oor is free. U2 sends a request shortly thereafter, and is told to wait, until U1 con�rms

oor reception. After such con�rmation, U2 is denied the
oor, and after U1 had its turn

and releases the
oor, FC assigns the
oor based on the queued request from U2, which

82

GRT

RLQ

RVK

REQ
ACK

ASGN

REL
DNY

WAITACK

REQ

ACK

REQ

GRT

2U1 FC U

Figure 3.5: Call structure in SFC.

sends an ACK back. U1 requests the
oor again, and FC revokes the
oor from U2, who re-

linquishes it. FC grants the
oor to U1, who acks reception. A chaired, queued, preemptive

policy is enacted in this dialogue. If requests arrive at FC at the same time, the timestamp

or sequence number of the arriving control headers can be used as a criterion to sequence

requests.

Figure 3.6 shows alternative coordination geometries directing the
ow of control infor-

mation between nodes. In case (a), four users attempt access to a central shared resource

R (circle) either managed by some distinct FC node, or with direct uncoordinated access

to R. Case (b) depicts
oor control on replicated resources in a fully-connected network,

where users communicate directly with each other and one users assumes the role of the

roving FC. Case (c) shows a ring topology, where
oors are being passed round-robin from

user 1 to 4. Floors can only be acquired, when the token passes by. Case (d) depicts a

star-geometry with central coordination, where resources are replicated and a users can

only acquire access to remote resources by asking FC. Case (e) conceptualizes a tree-based

oor control mechanism, in which control primitives are forwarded between levels toward

the current FC, which can be any node in the tree. Topologies can be derived from the ac-

83

tual underlying network connectivity, or are logical artifacts to structure the
ow of control

messages between nodes. Large-scale collaboration architectures may use a conglomerate of

various logical topologies, for instance a bus in the local network, a ring for the metropolitan

scope, and a tree for long-distance interconnection.

Figure 3.6: Coordination topologies.

3.3.2 Comparative Analysis

In this section we compare the eÆcacy of
oor control protocols to disseminate control in-

formation and warrant
uid
oor passing. Little related research has been published on this

subject. Pendergast [174] argues, based on message and latency comparisons for generic

collaboration environments, that an independent-objects model achieves the best perfor-

mance, followed by central sequencing and distributed operation. Distributed algorithms

should only be used when response time and physical or temporal ordering are required.

The study assumes generic state machines for modeling the three application types and does

not take network or user behavior into account. Ahuja et al. favor single-site approaches

in comparison with multi-site and hybrid approaches [7]. Trossen and Katona [223] show

the limitations in scalability of T.120 with a conference load model evaluating
oor passing

and asking [52].

84

Our analytic comparison of known classes of
oor control protocols is a �rst attempt to

characterize the eÆcacy of interactive behavior of people and processes from a resource con-

tention perspective and to highlight performance di�erences among coordination schemes.

The intention is not to predict exactly how a protocol performs for a given CE; accom-

plishing this would require far more host- and network-speci�c details and statistics on user

behavior. Our goal is simply to assess the overhead of various protocols with regard to con-

trol state management. The basic methodology is derived from multiaccess communication,

based on the analogy between access mitigation for the data channel and shared resources.

To make the analysis tractable, we state the following assumptions: the individual host

processing cost for control packets, including protocol overhead and user-interface speci�cs,

is the same for all hosts; message delivery between hosts is reliable and no failures in hosts

or the network occur; we only account for the processing e�ort in sending
oor control

messages; information from a station reaches any other station with the same average

system-wide propagation delay; the interarrival rate of
oor requests is Poisson, given that

there is no indication for cross-correlations between subsequent
oor requests; depending

on the session model, subsequent requests are either being discarded, or queued and served

in FIFO order; �nally, the task length, i.e., the
oor holding time, is normalized.

For the analysis, we take into consideration the interarrival rate for
oor requests, the

task length, and the network propagation delay. We consider a point-to-point model of

message dissemination, as well as a broadcast model, because a number of systems have

been implemented for one model, but not for the other. The broadcast model uses IP-

multicast, i.e., a hosts needs to send a message only once to the network interface, where it

is multicast to all the receivers.

The notation used in our analysis is summarized in Table 3.3: to model acquisition of a

oor token ahead of time, we introduce the idea of \think time", denoted with �1 (the time

until the expected
oor arrives at the local station) and �2 (the time once the
oor token

is present at the local station and o�ered to the user);
 is the average time to process or

communicate a
oor directive; Æ is the duration of an activity period, which is normalized

85

�1 Average \think" time before
oor token arrival
�2 Average \think" time at
oor token presence

 Average processing time for a
oor directive
Æ Duration of average activity period
n� Processing and unicasting overhead to n receivers
� EÆcacy of a
oor control protocol
G Average o�ered
oor request load
� Average duration of idle time
� Floor request interarrival rate
m Average number of stations in session
n Average number of active stations in session
� Average vulnerability period
� Average propagation delay

Table 3.3: Analysis parameters.

to 1; we use n� > � as the additional delay to account for the dependency of the com-

munication and processing overhead on the number of stations collaborating; G = Æ � �

is the normalized o�ered request load on
oors, including new and previously denied and

resubmitted
oor requests; � sums up the expected idle time for a resource during
oor

holding time; � represents the relative frequency of demand for resource access and thus

indicates the contention level; m < 1 stations denotes all stations being a member in a

session; n < m is the number of active stations in the multicast group for the current
oor

and transmission; � is the time during which a station's attempt to access a resource can

be intercepted by another station; and � denotes the average end-to-end delay between

stations, including packetization delay, generic queuing transmission times, and local pro-

cessing overhead. The activity period and time to process and communicate
oor directives

are assumed to include the time incurred in providing feedback among stations.

User behavior in terms of the switching of control over a particular resource is incor-

porated into this analysis with a turn taking model [55], which serves as the conceptual

blueprint for our analysis. A prototypical turn taking period is depicted in Figure 3.7,

which shows the call pattern between stations and the e�ect on the particular controlled

resource. A turn has accordingly three stages: the contention time X, accounting for re-

quest, contention and granting or denial periods; an activity time A, accounting for
oor

holding and releasing; and an idle time I (which may or may not occur) accounting for the

time period when the resource is not actively being used.

86

t

STATE REQUEST GRANT GRANT

DENY REQUESTREQUEST

Turn period

Busy period

Idle
periodperiod

ActivityContention
period

Resource /
 Floor

Host 1 /
FC

Host 2

Host 3

B

T

X X

γ γ δδ δ
X

γ
A2

A1

A2

X

X

X X A3

ι ι
...

ττ
I IA1 A3

εnεn

Figure 3.7: Turn taking periods for a resource and three stations.

Figure 3.7 depicts a conversation between three stations trying to access a resource.

First, station 1, which is also FC, holds the
oor and its activity outcome is transmitted

to the other stations. Second, stations 2 and 3 try to acquire the
oor, and station 2

wins, because its request was �rst received at FC. Station 2 starts accessing the resource,

until the
oor holding time expires. Third, station 3 acquires the
oor without collisions.

This diagram represents the case when FC is separate from FH, and is applicable to both

implicit and explicit
oor passing. It is the variations in allocation patterns and duration

of
oor periods that make certain control mechanisms more eÆcient than others. Based

on this abstraction, we de�ne the eÆcacy of a
oor control protocol, denoted by �, as the

proportion of time that a protocol needs to allocate a resource, including overhead from

the protocol itself, the network, and user behavior. In other words, we want to assess the

reactiveness of a protocol in a speci�c system architecture to signal for attention, submit

a request, receive a reply, and select a user to be in charge of a resource. Formally, the

eÆcacy � is the ratio of the average
oor usage time �U vs. the overall average turn length

�T = �B + �I, with an average busy period �B and idle period �I:

� =
�U
�T
=

�U
�B + �I

(3.4)

87

The average contention period �X and activity period �A together form the average busy

period, �B = �X + �A. These turn periods serve as the building blocks for our eÆcacy

analysis. An important aspect of our comparative analysis is the impact that multicasting

at the network layer has on the eÆcacy of the
oor control protocols. When network

multicasting is not available, the user stations are forced to contact one another explicitly,

which substantially increases the processing overhead at stations and the possibility of

disagreement on which station has the
oor.

We model the existence of multicasting at the network layer by assuming that a user

station needs only to pass information once to the network (during an activity period and

to gain the
oor) for the information to reach all other stations with the same average delay.

In the following paragraphs, we discuss the eÆcacy of prevalent solutions with and without

multicast support.

Random-Access Group Coordination Schemes

Incoordinated Social Mediation (RSI) refers to a purely random scheme of resource access

in a self-moderating session. Shared access becomes guesswork and data inconsistencies

are expected. Possible causes are insuÆcient feedback through the user interface about

remote activities, delay caused by host or network limitations, or uncooperative users on

a self-moderating channel. As a consequence, contending stations, being unaware of each

others' immediate actions, may experience
oor acquisition con
icts by trying to access

a resource at the same time. Although all information is distributed reliably to all user

stations, the latency introduced by the system can lead to inconsistent views of the
oors

at di�erent stations. When this occurs, we assume that all users involved in the con
ict

must restart their activities. There is no system support to mediate con
icts and ensure

system-wide consistency of the state of the shared resource, and all messages must hence

percolate through the entire protocol stack to be re
ected in the user interface, which makes

the con
ict detection process long and ineÆcient.

Theorem 1 The eÆcacy of RSI without multicast support is

88

�RSI = (Æ + n�)�e�2�(Æ+n�) (3.5)

collides withcollides with
start of A end of A

A
t

X X

T

I

εnδ +

Figure 3.8: Prototypical RSI timeline.

Proof: Figure 3.8 shows a prototypical RSI turn. The proof is the same as for medium

access in an ALOHA channel [25]. In the point-to-point model, we assume that n stations

are actively monitoring each other, and it takes an additional time n� for all stations to

perceive the activity from a given station. All the information is exchanged reliably, and

the average vulnerability interval is twice the total of the task length and the added over-

head incurred in serial communication of the task information to all stations (i.e., Æ + n�),

because messages can intercept activities any time. Because request arrivals are Poisson,

the probability that a task is successful is e�2(Æ+n�)�. The success probability times the

number of arrivals in one activity period results in Eq. 3.5. 2

Corollary 1 The eÆcacy of RSI with multicast support is

�MC
RSI = �Æe�2�Æ (3.6)

This follows under the assumption that every update to and from a station requires only

one transmission.

Social Mediation with Feedback (RSF) assumes cooperative users following agreed-upon

social protocols, relying on feedback support on remote activities from the network and user

interface. If a user contends for a
oor and perceives remote activity, she would back o� for

a random short period and attempt to reclaim the
oor after remote activity subsided. RSF

in video conferencing, as with the MBone tool vic [150], is often realized as \voluntary

distributed control" [77], where cooperative users switch video streams manually on and o�,

depending on whether they prefer to receive or send speci�c video transmissions. Analog

89

POTS conferencing also relies on RSF, which works well for very small groups. Except for

user interface updates, both RSF and RSI incur little implementation cost regarding user

coordination.

Theorem 2 The eÆcacy of RSF without multicast support is

�RSF =
Æ

Æ + e2�(
0+n�)
�
e�(

0+n�)
�1��(
0+n�)

�(
0+n�)(1�e��(

0+n�))

+
0 + n�+ � + �+ 1
�

� (3.7)

Lf + γ δ+nε
t

T

τ

Xs

γ τ

A

τ

Xf I

ι+1/λ

Figure 3.9: Prototypical RSF timeline.

Proof: A prototypical timeline of RSF is depicted in Figure 3.9. n active stations

need to sense and process remote activity through the network interface. The success

probability, denoted as Ps, equals the probability that no activity packet arrives in an

average vulnerability period � of 2(
0 + n�) s, i.e., Ps = P [0 packets in �] = e�2�(

0+n�).

The average utilization period lasts �U = ÆPs, and the length of the average busy period

�B = �X + �A is determined by the time needed to handle unsuccessful
oor requests in the

failed contention period Xf and successful requests in Xs, with �B = (1�Ps)Xf +PsXs. An

average failed turn attempt consists of a geometrically-distributed inde�nite number (L) of

interarrival times of
oor requests with duration f s(econds) (average time between failed

oor-request arrivals), plus the duration observing a request (
0). The values for L and f

have been derived by Takagi and Kleinrock [217]. Substituting our notation in these results,

we obtain L = e�(

0+n�) and f = (�(
0 + n�))�1 � e��(

0+n�)=(1 � e��(

0+n�)), respectively.

Accordingly, the average time of a failed turn attempt equals Xf =

�
e�(

0+n�)
�1��(
0+n�)

�(
0+n�)(1�e��(
0+n�))

�
+

0 + n� + � . An average successful turn lasts Xs = Æ +
0 + n� + � . Finally, based on the

Poisson assumption, an idle period consists of an average idle time interval plus the time

until the next
oor request arrives on the average, �I = �+ 1
�
. Substituting into Eq. 3.4, we

obtain Eq. 3.7. 2

90

Corollary 2 The eÆcacy of RSF with multicast support is

�MC
RSF =

Æ

Æ + e2�

0

h
e�

0

�1��
0

�
0(1�e��
0)
+
0 + � + �+ 1

�

i (3.8)

With multicast support, the vulnerability period reduces to 2
0, and � becomes negligi-

ble.

In Activity Sensing (RAS) [41, 84], activities on shared resources are monitored by a

background process at the session layer (without the user having to do so) in order to sense,

which node currently operates on the resource. The RAS concept is related to collision

sensing on a multiaccess channel [25]. In principle, no changes to a collaboration-unaware

application are required to integrate
oor control by modifying the X-server to intercept and

�lter calls to the application signifying access to a shared resource. Similar to the socially

protocolled RSF, a RAS system agent would back o� when detecting remote activity, deny

the local user the
oor until remote activity subsides, and signal a free
oor afterwards.

By that, a distributed collective of activity sensing agents enacts more accurate monitoring

about resource states than humans could deliver. The disadvantage of this scheme is its

high implementation cost and its reliance on short link latencies, as shown below, which

makes it only suitable for LANs.

Theorem 3 The eÆcacy of RAS without multicast support is

�RAS =
Æ

Æ + e2�(
0+n�)
�
e�(

0+n�)
�1��(
0+n�)

�(
0+n�)(1�e��(

0+n�))

+
0 + n�+ � + �+ 1
�

� (3.9)

t
fX

γ

T

ττγ

AsX

τ+Y

I

ι+1/λδ+nε

Figure 3.10: Prototypical RAS timeline.

Proof: The timeline is shown in Figure 3.10. Without multicast support, a station has to

send
oor directives individually to every other station, which according to our assumption

91

takes
0 + n�. Because multiple unicast messages are used by each station,
oor-state

inconsistencies can arise during the entire time. The station is exchanging
oor directives,

i.e., the vulnerability period of the protocol is � = 2(
0 + n�). Using this vulnerability

period, Eq. 3.10 follows using the same approach as described in the proof of Theorem 3.7.

Corollary 3 The eÆcacy of RAS with multicast support is

�MC
RAS =

Æ

Æ + � + 1
�
+ e�� (
0 + 2� + �)

(3.10)

Proof: The access strategy is assumed as nonpersistent, i.e., a station backs o� im-

mediately from attempting to access a resource and claims the resource once it appears

free again. The vulnerability period for accessing an unused resource is one propagation

delay, � = � , within which other stations can cause a con
ict (opposite to RSF, where

twice the length of the contention interval is the average vulnerability period); therefore,

Ps = P [0 packets in �] = e��� . The average utilization period is �U = PsÆ. The average

length of a successful busy period is simply
0+ Æ+2� , which accounts for the delivery and

processing of
oor directives, the activity period, and associated network latencies. The

length of an average unsuccessful activity period consists of one truncated activity lasting

0 s, followed by one or more similarly truncated activities sent within time Y s, where

0 � Y � � . The expected value of Y is [217] �Y = � � 1
�
(1 � e���); therefore, the average

duration of a failed contention period is
0 + 2� � 1
�
(1 � e��). The length of the average

busy period is then �B =
0 + 2� � 1
�
+ e��� (Æ + � + 1

�
). The average idle interval is again

�I = �+ 1
�
. Substitution into Eq. 3.4 yields Eq. 3.10. 2

Scheduled Group Coordination Schemes

In SFC protocols,
oor token transmission must be reliable to ensure that
oors are not

duplicated, lost or forged. We exclude such situations from our analysis. In contrast to

the contention time
0 in random-access schemes,
 denotes here the time to transmit a

oor token to the next station. We assume for all protocols that � signi�es the average

92

propagation delay for multiple routing hops between stations coalesced into one hop. A

packet must hence traverse on the average the same number of hosts on the path from the

sender to a group of receivers.

We can identify three major SFC solutions to
oor control: In token passing the
oor

is being asked for or o�ered to the stations in the session in a prede�ned service order.

Stations, active or inactive, are either directly connected to each other, or they are logically

arranged in a multihop ring or tree geometry. Implicit token passing [25] is a special case

used to reduce token size, in which a station relinquishing the
oor simply goes idle. The

next node in sequence detecting resource idleness takes the
oor if a local request has been

recorded, or remains quiet. Similarly, the other nodes wait for increasingly longer timeout

periods to detect idleness and take the
oor if requested. However, such collision avoidance

lacks fairness in accessing tokens, because stations further away from the current FH may

never attain the
oor.

In Direct Coordination (STD), each station in a group is fully connected to every other

station. STD improves the response time. However, the number of links is n(n�1)
2 and grows

as the square of the number of nodes in the session, which makes this solution unscalable,

in particular for unicasting. Messages must be ordered or a voting mechanism among nodes

must determine a FH successor. Furthermore, cognitive abilities of human users to handle

ows from all participants are limited. Many small-scale commercial video conferencing

systems follow this model.

Theorem 4 The eÆcacy of STD without multicast support is

�STD =
Æ

n(
 + � + �) + Æ + �+ 1
�

(3.11)

δ+nε
t

γ γ τ τ ι+1/

A

τ

T

IXXr g

λ

Figure 3.11: Prototypical STD timeline.

93

Proof: The timeline for STD is shown in Figure 3.11. The average utilization period is

�U = nÆPs, because
oor capture is perfect and any one of the n active stations can acquire

a
oor of holding time Æ with success probability Ps =
1
n
. A
oor may not be released at

FH, until successor FH' received it. The control packet overhead is
 and the propagation

delay is � . Unicasting a
oor request to the n�1 active nodes amounts to (n�1)(
+�+�),

plus (
 + � + �) for a reply. The average activity duration is �A = Æ and may be trailed

by an idle interval consisting of a period � and an average interarrival time for all nodes,

�I = �+ 1
�
. Substitution into Eq. 3.4 results in Eq. 3.11. 2

Corollary 4 The eÆcacy of STD with multicast support is

�MC
STD =

Æ

Æ + 3(
 + �) + (n� 1)�+ �+ 1
�

(3.12)

With multicast support, the request-reply-release exchange of control packets takes a

time of 3(
 + �) + (n� 1)�, if we assume that every station incurs host processing overhead

from its n� 1 neighbors.

In Ring-based Coordination (STR), stations in a session form a logical ring, and a
oor

token cycles through the ring in a round robin order. STR is particularly suited to ensure

totally ordered and atomic delivery. Pendergast [174] discusses a group support system

operating on a token ring. Ziegler et al. [240] analyze packet-switched voice conferencing

mechanisms in a logical ring. A station that is ready to start an activity captures the

passing token, inserts a command sequence with address and control information, sends the

activity packets within this turn period, and transfers the token after completion to the

successor station. A station without pending
oor requests passes on the o�ered token. If

a token is held for excessive time it can expire, or a busy-token for this
oor is sent across

the ring to indicate that the
oor is taken and the token \alive". A station waiting for

the
oor can insert a reservation tag into a busy token to mark that it is next in line for

holdership. The circulating token hence replaces request and grant messages as a form of

94

explicit signaling, and contention among nodes in the ring is based on claiming the roving

token.

A related case is
oor control over a token bus, where a node passes the
oor token

along the list of stations attached to the bus. The delay in a token bus is inherently larger

compared to a token ring [25] and will not be discussed. A shortcoming of STR is that

a prede�ned token passing schedule does not re
ect spontaneous interactivity. There are

many variations on the detailed operation of
oor control in a ring structure, concerning

acquisition and release of the
oor token. The
oor can be granted ahead of its position

to a successor station, or it may only be acquired by a station when it passes through that

station. Likewise, a token can be immediately released after transmission (RAT) or released

after one more reception (RAR) at the sending station. For eÆciency reasons we focus on

RAT. In our model, the pre-arrival think time �1 plus the token-presence time �2 < �1

must be smaller than the ring cycle time. In case that the
oor is taken, �2 � (Æ + � +
).

Theorem 5 The eÆcacy of STR without multicast support is

�STR =
Æ(1 � e��(�1+�2))

n
2 (� +
 + �+ �2) + Æ(1 � e��(�1+�2)) + �+ 1

�

(3.13)

δ+nε
t

Tt-1 tT

δ τ

X

γ+

t

β2 1β1β τ

At-1 At

Figure 3.12: Prototypical STR timeline.

Proof: The timeline for STR is depicted in Figure 3.12. We assume perfect
oor capture

and only one node is active at any time. The average utilization is �U = ÆPs, with Ps as the

success probability that the token is available in the period �X = �1 + �2. The probability

that a
oor can be claimed by a user is Ps = 1 � e��(�1+�2). The token cycle time is a

function of the active node set n, and with growing session size it is less likely that all nodes

will engage in
oor contention. The cost to transfer a
oor token in a cycle involves on the

average n
2 nodes, amounting to n

2 (
 + � + � + �2) including processing overhead n�. The

95

average turn lasts hence �T = n
2 (
 + � + �+ �2) + �A+ �I. The idle time is again �I = �+ 1

�
.

Substituting �U and �T into Eq. 3.4 yields Eq. 3.13. The overhead to maintain the token is

not included in this result. 2

Corollary 5 The eÆcacy of STR with multicast support is

�MC
STR =

Æ(1 � e��(�1+�2))
n
2 (� +
 + �2) + Æ(1 � e��(�1+�2)) + �+ 1

�

(3.14)

With multicasting, a token is sent only once to the network interface, but it takes on

the average n
2 hops to cycle back for another turn option, however, the processing overhead

� vanishes.

Tree-based Coordination (STT) is a hybrid control solution based on the idea to per-

form
oor control across a logical tree structure, which allows for more eÆcient mixing of

individual media sources [226] and close correlation of the control geometry with the actual

underlying multicast routing tree, or the end-to-end reliable multicast tree. Hierarchical

organization of stations also supports inter-group collaboration, subgroup addressing, and

allows more scalable and economic transmission of session data [137]. A tree-based group

coordination protocol representing STT is discussed in section 3.5.

Control messages in a STT protocol are passed along branches of the tree in a parent-

child relation re
ecting multicast group membership. No speci�c node alone is burdened

with the obligation to make
oor allocation decisions, and tokens can wander freely across

the tree branches, without being cast into a speci�c traversal order other than what mul-

ticast group membership expresses. Control messages are aggregated across the tree by

coalescing multiple messages of the same type, such as
oor requests, into single directives

on their path to receivers. Such aggregated management of control information liberates

the FH from control implosion, where handling of control messages is concentrated in a

single node, and allows instead for message exchange in local groups. A control tree is

assumed to have a branching factor of K, indicating the number of children for each node.

The communication delay depends on the height of the control tree, not the session size.

96

The average messaging cost is O(logK�1(n)). A special case of STT, which equals a mod-

erated session model, a radiating star-topology with the FC at the core, is surrounded by

n� 1 neighbor nodes. This model is eÆcient for small sessions, however, the FC node may

become overloaded or fail for large sessions.

Theorem 6 The eÆcacy of STT without multicast support is

�STT =
Æ

(K + 1) �P (
 + � + �) + (Æ + �P�) + �+ 1
�

(3.15)

t

T

Xr AXg

Pτ ι

I

+1/ λδP (γ+τ+ε) P (γ+τ+ε)

Figure 3.13: Prototypical STT timeline.

Proof: The timeline for STT is depicted in Figure 3.13. We have again perfect
oor

capture due to explicit token exchange, with �U = nÆPs, and Ps =
1
n
. With the normalized

average path length �P , the average duration of the
oor capture period amounts to 2 �P (
+

� + �). Assuming that a node does not know the location of FH or FC, exploratory unicast

of a control message from one node to its parent and to each of its children would amount to

�X � (K+1) �P (
+� + �) plus a targeted reply costing �P (
+ � + �). However, as outlined in

section 3.5, nodes can be tagged with unique pre�x-labels, which allow for eÆcient absolute

or relative routing of control directives toward the FC or FH. Consequently, control directive

must be sent only to one neighbor node as the gateway on the path to FH, hence K = 0.

Signaling the conclusion of the activity period adds another propagation delay, �A = Æ+ �P� .

The activity period may be trailed by another idle period of average length �I = � + 1
�
.

Substituting into Eq. 3.4 gives Eq. 3.15. 2

Corollary 6 The eÆcacy of STT with multicast support is

�MC
STT =

Æ

Æ + 2
 + 3� + �+ 1
�

(3.16)

97

With multicasting, a request-grant pair takes two
 and � , plus another � to signal

completion of the turn. A close correlation between the control tree of the STT protocol

and the end-to-end multicast tree is assumed. A station sends only one message to the

network interface, i.e., �P = 1, K = 0, and � becomes negligible.

Two other SFC approaches are part of the taxonomy. In polling, stations are systemati-

cally or randomly probed for pending
oor requests by a central station, with polls acting as

oor tokens. Delay between polling a secondary node, waiting for its response, and shifting

to the next node can be large. Another disadvantage is the reliance on a central coordinator

node. In a reservation system,
oor allocation is divided into a reservation interval and a

data interval. The reservation period is �nite, but allows for variance in holding duration.

However, the natural
ow of interaction can not be accommodated by preset reservation pe-

riods, which may quickly become obsolete. Polling and reservation were excluded from our

analysis, because, to our knowledge, no telecollaboration systems have been built based on

these principles. For convenience, the eÆcacy �MC for the discussed
oor control paradigms

with multicast support is summarized in Table 3.4.

Protocol �MC

RSI �Æe�2�Æ

RSF Æ

Æ+e2�
0
h

e�

0
�1��
0

�
0(1�e��

0
)
+
0+�+�+ 1

�

i

RAS Æ

Æ+�+ 1
�
+e�� (
0+2�+�)

STD Æ

Æ+3(
+�)+(n�1)�+�+ 1
�

STR Æ(1�e��(�1+�2))
n
2
(�+
+�2)+Æ(1�e��(�1+�2))+�+

1
�

STT Æ

Æ+2
+3�+�+ 1
�

Table 3.4: EÆcacy of
oor control protocols with multicast support.

98

Results

We contrast the eÆcacy of the discussed schemes with four cases: (1) a small group in

a network with low link latency; (2) a small group in a high-latency network; (3) a large

group in a low-latency network; and (4) a large group in a high-latency network. We set

� = 0:005 s to characterize a short propagation delay as it is typical for local area networks,

and � = 0:4 s for wide area networks and Internet collaboration. The latter value is also

an upper bound for acceptable delay in applications dependent on timing relations among

separate media streams [212]. Small sessions are set to n = 5, which is representative for

PC-conferencing systems, and the value n = 300 for very large sessions corresponds to traces

from MBone sessions [140], sampled over a period of several hundred hours and indicating

a group size ranging from 150 to over 550 participants. The time to sense and react to

oor information in RSF is much slower than for machine driven sensing, hence we assume

a lower bound of
0 = 0:25 s. For automatic detection or processing of a control packet of

25 bytes length we assume
 = � = 0:02 s. The token-ring \think times" for arriving and

o�ered tokens are relative to the activity time, and set to �1 = Æ
2 s and �2 = Æ

10 s. The

typical idle time is chosen to be � = Æ
5 s. The normalized activity time is Æ = 1. Figures 3.15

and 3.14 plots the resulting eÆcacy for these scenarios.

0.00

0.20

0.40

0.60

0.80

1.00

0.01 0.10 1.00 10.00 100.00 1000.00

E
ff

ic
a

c
y
:

E
ta

 (
M

C
)

Offered load: G

Comparison for small sessions / low latency

RSI
RSF
RAS
STD
STR
STT

0.00

0.20

0.40

0.60

0.80

1.00

0.01 0.10 1.00 10.00 100.00 1000.00

E
ff

ic
a

c
y
:

E
ta

 (
M

C
)

Offered load: G

Comparison for small sessions / low latency

RSI
RSF
RAS
STD
STR
STT

0.00

0.20

0.40

0.60

0.80

1.00

0.01 0.10 1.00 10.00 100.00 1000.00

E
ff

ic
a

c
y
:

E
ta

 (
M

C
)

Offered load: G

Comparison for large sessions / low latency

RSI
RSF
RAS
STD
STR
STT

0.00

0.20

0.40

0.60

0.80

1.00

0.01 0.10 1.00 10.00 100.00 1000.00

E
ff

ic
a

c
y
:

E
ta

 (
M

C
)

Offered load: G

Comparison for large sessions / low latency

RSI
RSF
RAS
STD
STR
STT

Figure 3.14: EÆcacy with multicast support for low network latency.

99

0.00

0.20

0.40

0.60

0.80

1.00

0.01 0.10 1.00 10.00 100.00 1000.00

E
ff

ic
a

c
y
:

E
ta

 (
M

C
)

Offered load: G

Comparison for small sessions / high latency

RSI
RSF
RAS
STD
STR
STT

0.00

0.20

0.40

0.60

0.80

1.00

0.01 0.10 1.00 10.00 100.00 1000.00

E
ff

ic
a

c
y
:

E
ta

 (
M

C
)

Offered load: G

Comparison for small sessions / high latency

RSI
RSF
RAS
STD
STR
STT

0.00

0.20

0.40

0.60

0.80

1.00

0.01 0.10 1.00 10.00 100.00 1000.00

E
ff

ic
a

c
y
:

E
ta

 (
M

C
)

Offered load: G

Comparison for large sessions / high latency

RSI
RSF
RAS
STD
STR
STT

0.00

0.20

0.40

0.60

0.80

1.00

0.01 0.10 1.00 10.00 100.00 1000.00

E
ff

ic
a

c
y
:

E
ta

 (
M

C
)

Offered load: G

Comparison for large sessions / high latency

RSI
RSF
RAS
STD
STR
STT

Figure 3.15: EÆcacy with multicast support for high network latency.

The eÆcacy of RSI is below 20% in all four scenarios. Systems employing RSF bene�t

from coordination attempts and improve slightly over RSI, approximating 25% eÆcacy in

networks with faster links. Both schemes are unstable even at low request rates, Collabo-

ratory eÆcacy quickly decreases and the average delay becomes unbounded. This models

the phenomenon that users avoid frequent turn-taking in telecollaboration [115]. RAS was

a �rst attempt toward unintrusive machine-assisted
oor control and performs very well for

local area networks, where the system's responsiveness warrants quick updates and steady

resource tapping. For high link latencies it allows for slightly higher loads than RSF, how-

ever, it also degenerates quickly and rises barely above 20%. STD performs well for small

groups, where a station needs only to send few packets to the session remainder, but despite

stability for higher loads it barely exceeds 15% eÆcacy in larger sessions. In its best case of

small sessions and low network latency, STR approximates 65% eÆcacy and it is generally

stable, but degrades with rising scale and delay. In particular, it collapses for large sessions

with high latency. STT shows the best overall behavior, both in terms of scalability and

stability. It reaches up to 80% eÆcacy in low latency networks, and about 40% eÆcacy for

high link latencies, independent of session size. According to these results, STT �lls a gap

and is particularly well-suited for Internet collaboration in large groups.

100

In the following sections, we describe two protocols to implement
oor control in fully-

connected networks, and in shared multicast trees.

3.4 Floor Control Protocol (FCP)

In this section, we discuss the Floor Control Protocol (FCP), which deploys
oor control

in direct-link networks without speci�c assumptions on the node topology. FCP supports

queuing of requests using
oor passing or
oor asking, using various service policies. The de-

sign concept behind FCP aims at versatility and adaptiveness to allow usage of the protocol

for various resource and session types. The protocol operates distributedly and is assumed

to run independently at each host participating in a collaborative session, interfacing with

a session orchestration service. Contrary to other control mechanism such as token-passing

or activity sensing, FCP allows for concurrent
oors, and multiple
oors per resource, and

does not presume a prede�ned hop sequence or rely on a short propagation delay between

nodes. Communication among nodes is assumed to be solely via message passing, and not

in shared memory. Links may be unreliable for data transmissions, but are assumed to be

reliable for control message dissemination. We do not presume a multicast transmission

model for FCP, however, message overhead will decrease if multicast is used. FCP uses

two system roles,
oor holder (FH) and
oor coordinator (FC) to manifest distributed

control, which may be uni�ed or separately addressed in the control process exercised by

FCP. The roles depend on the nature of the shared resource, which is either ubiquitous and

hence available at multiple sites (e.g., �les), localized (e.g., an instrument, which is attached

to one site, but whose functions can be controlled remotely), or mediating between several

hosts (e.g., an audio-channel).

3.4.1 Data Structures

We de�ne the control roles in FCP as a triplet CR= fFO;FC; FHg. The
oor owner FO is

unique for each shared resource and introduces, owns, and withdraws it in the collaborative

workspace. The
oor coordinator FC, one per resource, is the principal process regulating

101

who may attain which
oor at what time. The
oor holder FH is the current temporary

user of the resource governed by that
oor. At the beginning of a session,
oor ownership

and holdership are decided depending on the joining order of nodes to the session. For a

resource Rj introduced �rst by node NX , this node is by default FOj , FCj, and FHj, until

distributed control shifts these positions in the course of collaboration. There may be several

oor holders per resource, if the usage semantics of that resource allows for multiple users

under mutual agreement, e.g., in the case of multiple graphical cursors in a shared editing

system. Information on roles is transferred with each control packet, i.e., each active site

is informed at all times about the current overall control state of the collaborative system.

Hosts, users, and resources are assumed to be uniquely identi�ed within a session. FCP

interfaces with a session directory that keeps track of the current organization of the session,

services requests, and tracks
oors for local resources and remote operations.

A control state table for all
oors is kept at each site participating in a session. Session

events such as withdrawing, joining, or side-activities in coteries are also re
ected in state

tables. The local and remote allocation of such tables, their replication and cross-referencing

is left to a detailed
oor control protocol working in conjunction with session control. The

control packet structure to uniquely identify and transmit actual control parameter instances

within sessions is given in Table 3.5 and allows for coordinated session conduction and

recovery.

Field Description
SId Unique session id
HN Hostname
GId Unique group id
UId User (agent) id
RP Role-based permissions
AId Application id
RT Resource/media type and instance
FId Unique
oor id
F# Number of allowed instances
FS Current
oor state

Table 3.5: Floor control packet structure.

102

SId and HN are unique designators for the particular session and machine. GId re
ects the

aggregation of users within the set of running sessions, their relation to groups and multiple

activities. UId and RP identify a particular user, his or her function and authentication

within the session, comprising both the assigned task (note-taker, speaker etc.) and current

status with regard to
oor usage (
oor controller,
oor holder, or participant). A priority

value can be attached to allow for preemptive task completion or preferred
oor attribution

for speci�c holders. AId identi�es the application in use, from which a particular RT, i.e.,

instance of some resource such as text, voice, video etc., emanates. FId and F# characterize

the speci�c
oor in use and its number of concurrent instances. Their values depend on

the number of
oors that a resource concurrently allows, as in the case of a whiteboard

with multiple cursors and telepointers. Finally, FS re
ects the actual state of the
oor-

control protocol, i.e., whether the respective
oor is free, granted, requested or in migration.

Such states must be tracked for local and remote actions in order to capture and control

collaborative events to and from the local site. For time-critical media the control packets

needs to be transmitted on behalf of a real-time transport protocol [44, 200].

3.4.2 Operation

The CM running FCP is assumed to be implemented as a middleware component below the

application layer, and acts as intermediary daemon process between users and applications.

FCP controls concurrent
oors in multiple threads of the same state machine. We assume

that CMs process input events reliably and on a �rst-come-�rst-served basis. State changes

in FCP are evoked with
oor control messages that do not a�ect the data packet structures.

The
oor control algorithm in FCP does not presume a prescribed topology. The protocol

states, transitory actions and events are traced in as many instances as there are
oors to

track. Control state information is disseminated between nodes only when they interact.

Each node keeps a local and partially replicated state table, which records the current state

of the
oor distribution. Table management is weakly consistent, receiving updates for a

speci�c
oor only if its node is active. Control packets contain per-turn information on

103

the sender and receiver nodes, session, user, and
oor state, which comprises the resource,

activity, and �. FCP di�ers from prior solutions in its distinction between local and remote

control, re
ecting the symmetric turn-taking scheme described earlier, which allows for

separation of local and remote a�airs at each node and tracking of multiple activities on

the same resource type among several partitions of the node set. The protocol consists

of �ve main states (LHF, RHF, IDLE, LRF, RRF) to represent submission of
oor

requests, attempts to claim a
oor, actual
oor usage, idleness and release, both for the

oor holder FH and
oor coordinator FC. The control operations executed by FH are

attempt, acquire, use, release, withdraw, and FC executes elect, defer, grant,

and revoke.

Coordination Policies

FCP works under separation of FC and FH, and with FC = FH, which implements a

roving
oor controller policy (\control follows holder"). This model compares to a hybrid

approach between centralization and a fully distributed approach. Control for a speci�c

oor is here always centralized in the node currently holding the
oor. Once a turn is

completed, control shifts to the next holder. This approach compares to electing a new

moderator at every turn and performs favorably for interaction across long-distances, since

messages must only be sent from users to one FH, rather than using an intermediary FC.

If FC 6= FH, a user must send a request message to FC, FC responds with a deny or grant

message, eventually transfers the
oor to FH, and may send an update to the group to

inform all nodes about the new
oor holder, which requires three messages on the average.

This model can be implemented in two possible ways: (1) a user sends one unicast request

message to FH knowing its location, and FH responds with a unicast to either deny or

grant the
oor, broadcasting (or multicasting) the update to the group interested in the

resource; (2) a user send a broadcast (or multicast) to the group asking for the
oor, and

receive the
oor from the current FH via unicast. In both cases, two messages are necessary.

104

Using FC = FH, assume for instance that the current
oor holder is located in Lon-

don, and the next
oor holder sits in New York. Collaboration partners in Europe will

bene�t from close collocation with the London-based FH, and collaborators in the US will

experience less delay when obtaining the
oor from New York. Only in the case of strong

oscillation of
oor holders across long distances will the bene�t of collocated coordinator

and holdership decrease. In addition, this model achieves better scalability and resilience,

because
oors will be handled by di�erent nodes in the network. We assume that data are

partially replicated, weakly consistent, and allow for independent activities and views. For

resilience, each node caches its local activities, and identi�es a
oor proxy, in the case that

other nodes are unable to connect to it.

State Diagram

Figure 3.16 shows a speci�cation of FCP in the form of a state machine, with � denoting

the set of states, and � denoting the set of activities and events causing state changes.

IDLE

RRF

LHF RHF

RRLR

LA RA

NLA NRA

GFGF

RW
RFRF

RE RE

HFHF

RW LRF

α

σ

Terminate-Floor-Control

RRF
RHF
LRF
LHF
IDLE

Request-Wait (backoff)
Remote-Request
Request-Floor
Request-Expiration
Remote-Activity

No-Local-Activity
No-Remote-Activity

Local-Request
Local-Activity
Hold-Floor
Grant-Floor
Initiate-Floor-Control

GF
HF
LA

NLA
LR

NRA
RA
RE
RF
RR
RW
TFC

Remotely-Requested-Floor
Remotely-Held-Floor
Locally-Requested-Floor
Locally-Held-Floor
IDLE (no activity)

IFC

IFC

TFC

Figure 3.16: FCP protocol state diagram.

The state diagram is simpli�ed in that it does not contain transitions for feedback
oors

or exceptions such as node failures, which necessitates
oor recreation and role elections

among the remaining nodes. We assume that sharing for each resource can be switched on

or o� by the local owner of a resource. The following description outlines the management

105

procedure, as it is exercised per
oor. Once a resource is declared public, FCP by default

assumes no activity (IFC into IDLE). FCP remains in the IDLE state, as long as CM detects

no messages from either local or remote users, indicating requests to the local FH or FC.

Either the local or remote node issues a
oor request (LR, RF), inciting a transition into a

pending state (LRF, RRF). This wait state serves to sort out simultaneous requests arriving

from various nodes according to priority and timestamps or sequence numbers. Nodes can

wait for a speci�ed time (RW), after which the request expires (RE) or the
oor is granted

(GF), using a hold-down timer. A variation of this \countdown-to-election" scheme is to

acknowledge requests individually and serve them based on sequence number information

tagged to a request. Acknowledgments on
oor requests are more eÆcient in comparison

to using a hold-down-timer, if network delays vary.

If the local node acquires the
oor (LHF), information produced in accessing the shared

resource SR is sent to the local application and disseminated to remote CMs. Local op-

erations and data a�ecting the resource may have been bu�ered and can be applied in

batch-mode. If the protocol enters the remote state (RHF), the local CM disallows local

input to a�ect SR. Information received from remote on resource updates is percolated up

to the a�ected applications. The turn duration can be based on a timer, incoming preemp-

tive requests, or the user releasing the
oor. Once the local or remote node acquires the

oor as FH and uses the resource (LHF, RHF), it can continue to do so (HF) until a
oor

request from a remote node is registered (RF), shifting the protocol to a wait state for the

other node. All request, wait, and hold actions are timed, or can be revoked preemptively

by FC and observe the turn-taking rules described. The time interval that FC takes to

decide upon the succeeding
oor holder must be large enough to allow every other potential

FH to send requests to this site. Enforcing acknowledgment on
oor migration implements

atomicity of the
oor state change. As long as an idle
oor is claimed or in migration to

another node, it is attributed to the previous FH. If a migration fails, the previous FH is

the default recovery location.

106

While FCP does not presume a speci�c logical topology among nodes, an underlying

multicast protocol [237] may impose a speci�c delivery strategy on the sending and receiving

nodes in a session. Resource usage is, depending on the
oors granted to other sites for that

resource, multicast to all members of the multicast group collaborating on the resource. In

case of simultaneous claims for the same
oor, the race condition is resolved by the request

packet arrival order and
oor sequence index, or permuted based on an agreed-upon
oor

policy. State transitions and timers are attuned to speci�c media characteristics. Multiple

incoming
oor requests may or may not be queued, depending on the resource and service

policy. Without queuing, unsuccessful users must retry until they get the desired
oor. In

order to render
oor management unobtrusive and integrated with operations on shared

resources, control must be anchored within the resource handling semantics, e.g., in the

form of voice-activated
oor allocation for audio conferencing. Temporary withdrawal or

leaving of a session terminates
oor control (TFC) for the resources from the leaving host,

with the option to restore the previous state in the case of rejoining from a log �le that

FCP maintains throughout a session. To minimize waiting time on
oor requests, a RF

discard strategy can be implemented with limited queuing, if too many RFs are received at

a
oor server. Fairness of FCP is resource-speci�c and depends on the established service

policy.

3.4.3 Correctness and Fairness

A
oor control protocol can be validated in its correctness, that is safety and liveness [25]

and fairness. Safety means that the protocol assigns only one
oor per turn to a user, and

that the
oor being assigned is the one requested. Liveness means that the protocol never

enters deadlock and that no user starves by waiting inde�nitely to attain a
oor. Fairness

is inherently given with the established
oor policy. We show that FCP guarantees safety

and liveness, even for the generalized case that FC 6= FH and K
oors being attainable to

control the same resource type, such as telepointers. More speci�cally, if a resource allowsK

concurrent
oor holders, FCP permits at most K nodes to access the resource at any time,

107

and every
oor request is serviced within �nite time. We assume failure-free communication

in the network and a bounded end-to-end delay between nodes. The following arguments

assume a unique and totally ordered indexing scheme among the nodes and activities,

atomicity in the transitions between protocol states, and that no code segment associated

with any event in the protocol can delay execution.

Theorem: FCP is safe.

Proof: We have to show that FCP does not grant resource to two or more parties at the

same time. Assume by contradiction, that for K nodes being granted a
oor, M > K nodes

actually have the
oor. Floors Fji for a resource Rj are indexed with labels i = 1; : : : ;M ,

de�ning an order (Fj1; N1) � (FjK ; NK) � (FjK+1; NK+1) � (FjM ; NM). In order to attain

a
oor, node NK+1 must have received a GF message from the current FCj . There are only

three possible cases in which FCj may have received a request message RF. (1) A node

NX ;X 2 1; : : : K, was already attempting to gain the
oor from FCj with
oor sequence

number FjX ; in this case, FCj would then have deferred the request from NK+1. (2) Node

NK was already operating on the resource in a previous turn; in this case, FCj would not

grant another
oor, until one of the nodes N1; : : : ; NK releases at least one
oor instance,

since FjK+1 > FjK . (3) At least one of the nodes NX ;X 2 1; : : : ;K, is IDLE such that its

oor is revoked after a timeout; in this case, request FjK+1 is mapped onto FjX and hence

node NK+1 can never attain a
oor, which contradicts the assumption. 2

Theorem: FCP is live.

Proof: We have to show that (a) no deadlocks occur, and (b) no livelocks (starvations)

occur. Ad (a): A deadlock happens when fewer than K nodes hold a
oor and a RF

message from node NX is unserviced. Suppose that a deadlock at turn T occurred and the

collaboration is deadlocked. Using the previously employed indexing scheme on
oors, a RF

can be deferred inde�nitely only if either FCj or FHj defer to reply to NX . If FCj does not

respond within timeout, a new controller FC 0

j for Rj is elected. If the current
oor holder

FHj, with 1 � : : : � FHj � : : : � X � : : : � K, does not reply, the
oor is revoked from

FHj after a timeout and is assigned to node NX . Therefore, at least one of the N�K nodes

108

that does not currently hold a
oor, eventually receives the
oor, which is a contradiction.

Ad (b): A node is said to starve, when its RF message is inde�nitely deferred while other

nodes are being served. Consider node NX trying to attain
oor Fj by sending a RF to

FCj . This request may be immediately serviced, or deferred if another node NY holds this

oor, or is attempting to do so with a lower request index h < j. At most j � h other

requests may be served before Rj is served; therefore, NX = FH 0

j eventually acquires the

oor FjX . 2

3.5 Hierarchical Group Coordination Protocol (HGCP)

3.5.1 Multisite Group Coordination

We outline the operation of the Hierarchical Group Coordination Protocol (HGCP) as

an example for STT protocols. Although tree protocols have been the subject of related

research, e.g., in mutual exclusion [182], channel access [25], or reliable multicast [137, 173,

237], to our knowledge no tree-based group coordination protocol has been proposed in

the literature. HGCP represents two innovations:
oor control is inherently hierarchical,

and the tree-based mechanism for propagating group coordination is assumed to be closely

correlated in its operation with an underlying tree-based multicast service. The underlying

multicast tree is assumed to be shared by multiple sources. The CBT protocol [19] builds

such a shared bidirectional tree for multicast routing, centered around rendezvous points

called cores. The Lorax protocol [137] builds a shared end-to-end tree used for error

recovery in reliable multicast. The HGCP control tree mirrors such a shared tree, unifying

forwarding, reliable transport and coordination in one coherent infrastructure.

Lorax [137] uses a single shared acknowledgment (ack) tree per session for multiple

sources, instead of creating a separate tree per transmission. The Lorax ack tree is char-

acterized by labeling of nodes from a �nite alphabet, with the property that the label l(x)

of a node x is the pre�x of its children. The purpose of these labels is to provide relative

addressability of multicast groups and subgroups. The maximal length of labels in a tree

109

re
ects its depth, and labels in the tree remain constant for the lifetime of the session,

except in cases when nodes withdraw or join. Adding a node in the tree involves only

the new node as a child and its parent, while deletions require relabeling of the subtree

of the deleted node. The label cardinality depends on the tree branching factor and the

session size. A tree with n session participants and branching factor K has logKn levels,

with log2n bits needed for node labels. The ack tree does not require modi�cation to the

router-internal IP multicast infrastructure. However, Levine and Garcia-Luna-Aceves have

generalized labeling to the router level [136], exploiting novel mechanisms of streaming and

addressing. The ack tree structure enforces cascaded acks and negative acknowledgments

across tree branches, and prevents receivers from contacting the source directly to con�rm

reception of packets or ask for retransmission of lost packets. Instead, recovery is contained

in local groups of tree subbranches by aggregating ack information.

In HGCP, the ack tree becomes the control tree of a CE session and shrinks or expands

dynamically during session lifetime. Stations are prevented by HGCP from contacting the

FH directly, and instead submit control directives for aggregation in their immediate tree

neighborhood, achieving better scalability in controlling the
oor for large sessions and

many resources. HGCP derives label information from the end-to-end multicast protocol

to administer
oor information and route control directives between hosts contending for a

resource. HGCP is hybrid in that FH poses a centralized, but roving point of control for

an individual
oor; however, the protocol runs in every node starting or joining a session

and the union of distributed
oor states in every active node yields the global control state.

3.5.2 Data Structures

Control responsibilities are distributed over the entire session tree, dividing the session into

local groups with three kinds of nodes: a control node, relay nodes, and leaf nodes. The

control node hosts the FH (or FC), regulating access to a resource R and transmitting

updates concerning R. Relay nodes collect coordination (control) directives (CDs) from

their children and forward them in the tree towards the FH. Likewise, they relay replies

110

back to their children. A relay node, which is not a member of the destination multicast

group for a directive is called an extra node. An extra node can be viewed as a proxy for

the destination node. Leaf nodes delimit tree branches and communicate solely with parent

relay nodes.

For messaging eÆciency, HGCP uni�es the roles of FH and FC and locates them

jointly in one node. If both roles would be separated, three nodes are involved in a triangle

communication: a node x would �rst have to contact the FC, who would await release of the

oor from the current FH, and then grant the
oor to x by asking FH to transfer the
oor

to x. With uni�cation of FH and FC, a moderated session style can still be supported, by

sending the
oor back to the moderator node after turn completion for assignment to the

next
oor holder. Role uni�cation is also practical for loosely coupled sessions, which need

no distinct leader and are destined to make progress in self-moderation. FH does not have

to know the identity of session members, because generic labels provide suÆcient routing

information, i.e., HGCP supports anonymous collaboration.

A coordination directive CD consists of a list of source labels flsg for the aggregated

delivery of directives from multiple nodes, a list of destination labels fldg, a timestamp (or

sequence number) #, a time-to-live �eld TTL, an identity descriptor ID for public, private,

or anonymous submission of directives, and a
oor descriptor f containing
oor information

as speci�ed in Chapter 2:

CD(flsg, fldg, #, TTL, ID, f) = < directive >

The TTL �eld sets an expiration date on persistent CDs. Setting TTL = 0 con�gures

nonpersistent
oor allocation. Values for < directive > are: REQUEST to ask for access to a

resource; GRANT to grant permission to access the resource, provided that the
oor is free;

DENY to signal that the
oor is taken or reserved; RELEASE to relinquish the
oor; and STATE

to retrieve updated
oor state information. Each host in a session is client and server for

coordination directives (CD) to other hosts. CDs are issued between hosts to synchronize

their joint tasks, to implement causal or total ordering in distributed events, and to mitigate

access to shared, but exclusive resources.

111

Each CD contains the source's label, the target label(s), a sequence number, a local

timestamp, a session-wide unique resource id obtained from the session directory, and a
oor

id, which denotes the temporary access permission or an activity descriptor for a resource.

The structure of a CD packet is shown in Figure 3.17. V denotes the version. CDid

identi�es the coordination directive. Typ denotes the type of operation, characterizing

various resource modalities. TTL indicates the scope of the CD.Opt is reserved for priority

codings. The timer and sequence numbers tag the CD uniquely in the session and event

space. Checks is the checksum �eld. The Source addr and Target addrs �elds contain

the labels for the sender of a CD and its target nodes.

Opt

Seq# ChecksTimest

0 31

V

2 2012

Source addr

Typ TTL

Target addrs ...

CDid

Figure 3.17: Packet header �elds for coordination directives (CDs).

3.5.3 Operation

HGCP can implement nonpersistent
oor control, with any request except the �rst accepted

one being discarded, or persistent
oor control, where a �nite request queue is maintained

to keep track of consecutive requests. It regulates messages exchanges between peer user

agents, which are either users or applications acting on behalf of users, with the goal to

intercept data and commands between users and ensure that only one user can access a

particular resource at any given time. Each user agent tracks one or more
oors, one per

resource. The
oor state is controlled in a distributed fashion. Call setup, late joining and

withdrawal from a session are handled by a membership protocol interfacing with HGCP.

HGCP scales well because nodes only maintain a local picture of their immediate ses-

sion neighborhood, knowing the direction toward the current FH for a speci�c
oor, and

communicate only within the local group de�ned by parent and children nodes. FHs are

positioned at the root of the tree, and the tree is virtually rotated at
oor hand-over towards

112

the new FH, whereby balancing properties of the tree may change. Less interactive stations

are more likely placed on leaf positions. On the average, leaf nodes must compare more bits

in the control routing procedure than nodes close to the root. Compared to a geometry in

which nodes are fully connected, trees signi�cantly reduce the amount of messaging. Labels

also allow for communication between distinct coteries of hosts, without involving the entire

multicast group.

The setup phase of HGCP can be initiated along with or after session advertisement

via a session directory service. If the session is open, new nodes can join, otherwise invited

stations are only allowed to withdraw. Each station maintains a
oor state table containing

oor information about the local and remote resources being part of the shared workspace.

The state table is compared at regular intervals with the tables of parent and children nodes

in the tree, and is incrementally updated, if a younger table is detected. In this sense,
oor

agents are a cooperative collective, building a consistent distributed control state for the

entire session. Every station advertises its shared resources and
oors to neighbor stations

in the reliable multicast tree and integrates updates from these stations into its local
oor

state table. The station introducing a resource R to a session S creates and injects the
oor

token for R into S.

The active phase ofHGCP concerns the aggregation and forwarding mechanism between

local groups in the control tree for the various node types. A node can access and use a

shared resource R only if it becomes FH. The
oor for R is idle if no station sends messages

to the network concerning R. To acquire the
oor, a station sends a REQUEST CD to its

neighbor station in the control tree, which is closer on the path to FH. The direction is

computed by taking the pre�x of the location entry for the
oor marked in the
oor state

table. Each request is compared against requests pending from other nodes. According

to the aggregation semantics, if a near-by node is able to provide a CD response, the CD

request is served by this node and not propagated to the FH. Compounded CDs received

at FH are ordered and serviced �rst based on priority, second with regard to queuing,

timestamp and reception order. If the FH is static, eligibility for the
oor may also be

113

decided based on statistics, indicating frequency and holding time per
oor for each node to

induce fairness into the
oor acquisition process. When FH completes its resource access,

it sends a GRANT CD to its successor, based on the source label information. After receiving

con�rmation, FH oÆcially relinquishes the
oor by multicasting the position of the new

oor holder, denoted as FH', to the session. A new turn cycle begins, with nodes contending

for the
oor now submitting REQUEST CDs to FH', which may also receive a copy of the

request queue and hand the
oor to the next station in the queue when �nished.

In the termination phase,
oor state information is deleted from the records of the

local station, but retained in a log �le for turn-taking history. Single nodes can withdraw

intentionally or by failure from a session. In normal operation, any node not interacting and

a�ecting the global
oor state can withdraw. Consider the case that a station that submitted

a request for the
oor withdraws before a GRANT CD reaches it. A successor station FH'

must con�rm reception of the
oor before the remainder session updates its state table on

the location of FH'. Hence, pending but uncon�rmed
oor hand-overs are never registered.

If FH wants to withdraw from the session, HGCP revokes the
oor from this node and

assigns it to the node with the oldest pending request. If a relay node withdraws from the

session, its children and parent link together and re-initiate any operation pending on the

missing relay nodes.

Hosts need to maintain locally the following state: the resource ids shared from local to

the remote hosts, and the remote resource ids accessed locally, together with their CDids;

a state table indicating which resources are locally available or held remotely, and the id

of the remote FH; and a request queue ReqQ which collects successive CDs from di�erent

hosts (the queue is limited by the number of nodes in the session). If a hop node receives

the same CDs from di�erent nodes, it aggregates them into one CD and checks to determine

if a response to these requests can be satis�ed locally by polling its own state and the state

of neighboring nodes. Otherwise the composite CD is self-routed up or down in the tree

toward the target node(s). This implies that the number of CDs required to coordinate

nodes decreases as the request activity increases, because requests are not sent further, if

114

a hop node is reached that has already processed the CD. The target address may also

contain the name of a multicast group, which is then resolved into its members locally at

the primary receiver node for this group. A joining node retrieves the current control state

for resources of concern by polling its parent node.

In addition, each node maintains a FIFO queue of pending CDids, identi�ed by the

senders' labels. A hop node receiving a
oor compares the label of the elected node with

the head of the queue, and self-elects if its own label matches the head, or forwards it in the

routing procedure outlined above. A control node receiving a request responds immediately

to the request by sending back a grant message to the requester, if its local queue is empty,

or it appends it to its queue. When control shifts from a node to another one, the pending

request queue is transferred to the new control node and its new address is multicast to all

groups sharing the associated resource.

The example in Figure 3.18 illustrates the operation of the protocol in a binary control

tree and with a binary labeling alphabet. The protocol stack indicates that HGCP, run

by a
oor agent FA, is collocated with a session management agent SA, interfacing with

reliable multicast below and applications above.

����

��
��
��
��

����

SA

App1
App3

App2

Media Codecs

RMCast
FA

10 11

1

x x x

a a

100 101 E E Ec

d

b

c

de e d e

a

bb

y z
data

CD request
1010

1001
1000

1011

CD response

c

y

FH’

(b) (c)(a)

FH FH

Figure 3.18: Sample HGCP scenario.

In scenario 3.18(a), FH for some resource R is initially placed at the root a, with l(a) =

1. All nodes have a consistent update on the current FH for various resources in their
oor

state table. FH multicasts data updates of its work on R, indicated by hollow arrowheads,

to all the sites in the multicast group, which may process the update or discard it. Switching

115

a remote resource on or o�, such as a video stream, compares to a local \receiver
oor",

by which a station can individually con�gure its stream and data reception. Floor control

exerted by HGCP concerns only \sender
oors". Consider the case that nodes x and e

contend for the
oor of a shared resource R. Looking up the FH entry for the resource

in question, they send a REQUEST CD to their parent, because l(FH) = prefix(l(e)), and

l(FH) = prefix(l(x)). For the parent node c of e, l(FH) = prefix(l(c)), and similarly,

l(FH) = prefix(l(b)). Hence, both requests cascade upward in the tree toward the root.

Node b is the relay node for x and e and either already has forwarded the request from x to

a, if CD(e) arrives after CD(x), or it aggregates both CDs into one request, and propagates

it to a. Assume that the request from x arrived earlier or that it is prioritized. Once FH

�nished and released the
oor for R, or when its
oor expires, it multicasts a GRANT CD

across b to x. Once x con�rms reception of the
oor, a multicasts an update with label

information l(FH 0) = l(x) = 100 to the remainder of the session, indicating the start of a

new turn.

In scenario 3.18(b), x is the new FH', and starts using R and multicasts updates to

its children. All nodes in the multicast group propagate their CDs towards the location of

FH', as indicated in scenario 3.18(c). Node y dropped out of the session and all its shared

resources ri with FO(ri) = y are withdrawn and
oor states tables across the session are

marked up accordingly. A new node z in subtree E joins the session and sends a STATE CD

to its parent after integration into the control tree, retrieving the current state table for

its local resources shared with the session. Assume that the parent node of local multicast

group E has the most recent state table (all nodes are steadily querying their neighbors and

eventually converge towards the most current state table.) Then the update request from

z remains in the right subbranch of the tree and does not need to be forwarded to FH',

i.e., target nodes such as FH' are relieved from the obligation to handle every request from

within the session. After this update, node z can start contending for the
oor with the

other active nodes by propagating CDs toward FH' based on label information.

116

The example shows that labels are valuable both as absolute and relative path�nding

markers in the control process. Reliable multicasting and aggregation of CDs and
oor

states between a node and at most K children (instead of the entire session) allows for

more economic storing and forwarding of control traÆc.

3.5.4 Resilience

The shortcoming of a tree model is that a damaged branch a�ects all children nodes, which

may corrupt the coordination process unless it is a leaf or branch that breaks o�. Such

exceptions must be communicated to other on-tree hosts. We will not discuss repair and

maintenance mechanisms for trees, since this is the task of the underlying reliable multicast

tree protocol, however, we discuss the impact of breakages on the communication of CDs,

control roles, and the consistency of
oor information.

Several cases must be considered when nodes or links fail: (1) a node fails, either (a) as

FH, or (b) requesting a
oor, or (c) being uninvolved in any
oor allocation process; and

(2) a link fails (a) with coordination directives in transition, or (b) otherwise. In case (1a),

if FH fails holding the
oor, a timeout and election protocol among neighbor nodes ensures

that the lost
oor will eventually resurface at one of these neighbor nodes. In cases (1b)

and (2a), a pending request may be ful�lled after a station disappeared from the session.

Since this station will not con�rm the
oor transfer within a timeout period, the
oor will

be reassigned to the next contending node in line. In cases (1c) and (2b), any other node

may withdraw from the session any time; however, if this node is an extra node for a
oor

transfer, the parent and child node embracing this node must �rst reestablish a connection

to be able to conclude the transfer as proxy nodes for the failed node. Every
oor state

alteration is hence treated as a transaction, and interrupted
oor changes are reset to a

consistent state before alteration, or committed when succeeding. In the nonpersistent

model, nodes must resubmit their failed requests after a timeout.

Previously, we assumed that transfer of CDs and accounting of control information

among nodes is failure free. Even we if assume reliable multicasting to ensure that CDs are

117

eventually transferred, the control apparatus may need additional recovery mechanisms to

ensure consistency. This applies to regular node failure, control node failure, link failure, or

token loss or duplication. Such exceptions can be preempted by redundant dissemination of

status information, or by detection of loss and recovery. Regular node or controller failures

are typically detected via timeout and recovered with an election protocol, with neighbor

nodes providing state updates. Continuation of a split session is possible if the members in

each partition agree to continue, e.g., if a quorum exists.

One method to deal with the case that a CD is lost completely or reaches only a subset

of nodes is to multicast a CD probe message from a node i to the session remainder. The

response time tr to receive a response is bound by the maximum time for the probe to

traverse the longest link, tmax, plus the time tack for the receiver nodes to send a positive or

negative acknowledgment, tr = 2tmax + tack. If the CD is diagnosed as lost, the controller

node for the respective
oor must regenerate the token and send an update to the session.

In the following paragraph, we show that HGCP is safe and live for the case of a static

FH.

3.5.5 Correctness and Fairness

Theorem 7 HGCP is safe, i.e., at most one node receives the
oor for a speci�c resource

at any time.

Proof: A
oor control deadlock exists if node x holds the
oor and at least one or

more nodes request the
oor, but are unable to acquire it in �nite time. There are several

potential reasons: (1) A node operates on the resource without being really granted the

oor; if there is no legitimate FH, the
oor privilege cannot be passed on; (2) the GRANT

CD is transmitted but does not reach any requesting node; and (3) FH is unaware of

requests. The proof is based on the idea that the control tree is acyclic and propagation of

request messages between nodes towards the FH prevents circular stalls of control messages.

Using induction on the height of the K-ary control tree, the tree reduces for h = 1 to a

non-hierarchical star-based scheme with n = K + 1 nodes.

118

In case (1), the
oor semantics states that a
oor is assigned to one node at all times,

that is either FH, or one of the other K nodes in the session. If the node currently holding

the FH privilege is di�erent from the node legitimately holding the
oor, this node will

acquire the FH tag. In case (2), a FH candidate node is either nonexistent or withdraws

from a session, while the
oor is in transit. As stated earlier,
oor transfers must be

con�rmed by the receiver to the sender, and stalled transfers are nulli�ed. In case (3),

if FH is unaware of requests, this node is eventually timed out, and the FH privilege is

shifted and assigned to one of the K active neighbor nodes. If a node x, as one of the active

nodes, sends a REQUEST CD towards the FH, it is received by the FH assuming reliable

transmission. Upon reception, FH sets a requested
ag and, if queuing is supported, it

inserts the label information of the requesting node in its FIFO request queue. Based on

the queue semantics, the
oor will eventually be shifted to node x.

For h > 1, we assume that the theorem holds for any height l with 1 � l < h and

we need only show that the theorem also holds for l = h. The mechanism of transferring

oor holdership, as discussed in the simpler case, can only be bypassed if a REQUEST CD is

continuously outrun by a GRANT CD. However, the implicit routing scheme based on labels

de�nes a forwarding order on nodes, that de�es inde�nite stalls of REQUEST. No node can

inde�nitely hold on to a
oor, because
oors expire or peer nodes will revoke the
oor.

The FH must eventually become legitimate, or
oor transfers must be con�rmed, or FH

must become aware of other nodes requesting the
oor based on the principle that REQUEST

CDs are propagated steadily towards the FH. Thus, directives toward and from FH must

eventually arrive at their destination node, and thus deadlock is impossible. 2

Theorem 8 HGCP is live, i.e., a request by any node x must be served in �nite time, and

no node su�ers from \
oor starvation".

Proof: HGCP is live because the FH node either services the �rst request and discards

all follow-up requests, or it maintains a request queue with nodes marked by pre�x labels.

This queue cannot be longer than n, given that no node is allowed double entry until other

nodes have been served. Each of the possible actions of FH will reduce the request queue

119

ultimately to length 1, which allows the remaining node to eventually acquire the
oor.

Hence, every node requesting the
oor will be served in �nite time. 2

Fairness refers to the frequency and duration, by which nodes acquire a privilege on the

average for a given period, which is for example the session lifetime, or the lifetime of a

shared resource in a session. Network latency, geographic distance and location of nodes, or

varying host capabilities can all be factors in causing uneven dissemination patterns of CDs

and unfair allocation of
oors. Leaf nodes take more time to propagate their requests across

the root to a node on the other side of a tree, than nodes just below the root. Shared trees

also do not provide shortest paths between a source and its receiver set [112], which may

cause increased latency in CD transfer. It is hence important to establish service policies,

which counteract these factors. One simple solution, a \least-recently-served" policy, can

be enacted by letting each node maintain a local record of the most recent CDs and their

originating nodes. Those nodes are serviced �rst, which do not appear on the list, or appear

last in time or frequency of service.

3.6 Discussion

In this chapter we focused on contention resolution with
oor control protocols and their

analytic comparison, making three contributions. First, a novel taxonomy for
oor con-

trol protocols has been proposed based on operational principles. Second, a performance

analysis in accordance with the taxonomy has been presented, subsuming rather di�erent

protocol classes in one coherent framework. This framework merges time aspects of protocol

operations with end-user behavior and thus accounts for both internal and external factors

regarding control of resource sharing. Although strong assumptions were made to keep our

analysis tractable, this is to our knowledge the �rst attempt to quantitatively characterize

the e�ectiveness of various strategies of
oor management in network-centric group collab-

oration. We found that an approach based on a logical tree structure outperforms other

control schemes in terms of scalability and eÆcacy. Third, a novel
oor control protocol

operating in a logical shared control tree has been outlined, whose operation is correlated to

120

a tree-based end-to-end reliable multicast protocol, permitting more practical implementa-

tion and inherent adaptation to membership and link changes in the shared multicast tree.

Furthermore, such an approach enables important functionality for collaboration of small

user groups within multicast groups, such as selective subgroup addressing and subcast-

ing. Future work must address issues of session stability, authentication, message ordering,

and fairness. We conclude that tree-based
oor control, embedded with reliable multicast,

represents a promising approach to support large-group interactivity across local-area and

wide-area networks.

121

Chapter 4

Ordered Multicast

In this chapter we focus on the ordered multicast distribution of coordination information,

such as activities, state updates on multimedia resources, and control primitives among ses-

sion members. IP multicast communication [47] generalizes the point-to-point and broad-

cast communication model to multipoint dissemination of messages. A source must send

a packet only once to the network interface, and packets are transparently replicated on

their transmission paths to the receivers. This form of communication is indispensable for

networked applications with high-volume data transfer, such as distributed software up-

dates, news casts, video-on-demand, and interactive applications, for example distributed

interactive simulations or telecollaboration systems. Data handled by these applications

fall into two categories, continuous media streams and non-real-time data. Real-time data

delivery, e.g., for video or audio streams, is typically best-e�ort and unordered, but must

observe deadlines to be useful for an application. Non-real-time packets carry discrete data,

and may require reliable, ordered delivery based on the application semantics. With IP

multicast, no guarantees are given for reliable or order-preserving delivery of packets to a

multicast group.

4.1 Motivation

Changes in datagram routing or transmission errors may cause packets to arrive at their

destination out-of-sequence. Disordered delivery of packets in a distributed application

may result in di�erent views of the group state at end-hosts. Ordering of messages com-

122

pensates for the lack of a global system state and the e�ects of asynchrony, unpredictable

network delay, and disparities in host processing in distributed communication. It assures

that destination processes observe the same order of reception of messages. Ordering is

complemented by reliability and atomicity. Reliability guarantees that messages eventually

arrive correctly at their destinations, and atomicity guarantees that a message is received

by all members of a multicast group or none.

Consider a distributed interactive simulation with many moving, interacting entities,

where a message m1 is reliably multicast from source s1 to receiver group Rec1, and m2 is

reliably multicast from s2 to Rec2. A host which belongs to Rec1 may receive message m1

before m2, while another host belonging to both groups may receive the messages in the

opposite order. Correct operation of the simulation system requires not only that the input

stream is equivalent for all replicas, but all input events have to be delivered to replicated

instances of shared applications in the same order. Some ordering protocol must intercept,

or better, be integrated in the delivery process to guarantee such consistency.

The majority of existing reliable multicast solutions [162] lack ordering services. A

comparison of the performance characteristics of such protocols [137], entailing sender- or

receiver initiated protocols, ring- or tree-based protocols, and tree protocols with negative

acknowledgments and periodic polling, showed that the latter protocol type is the most

scalable and eÆcient approach known to date among deployable systems. Based on these

observations, our objective is to examine how ordering services can be integrated with

reliable multicasting, in particular with tree-based protocols, preserving scalability and

eÆciency. In particular, our objective is to �nd a solution for symmetric ordered multicast,

where any node in a tree can be sender or receiver, and where multicast groups may overlap

without causing duplicate deliveries.

4.2 Related Work

Much work on total and causal ordering for multicast is centered around fault tolerance or

consistency issues in distributed systems. Chandra and Toueg [35] have shown that total

123

order broadcast and consensus are equivalent problems in asynchronous systems. Many

protocols from this �eld su�er from high overhead to achieve fault tolerance by introducing

messaging to implement a failure detector and consensus mechanism. Mayer [148] intro-

duces synchronization delay as a measure to analyze the delay behavior of three multicast

ordering protocols to achieve ordered delivery. Cheriton and Skeen [39] argue that CATOCS

(Causally And Totally Ordered Communication Support) attempts to solve state problems

at the communication level in violation of the "end-to-end" argument [192], based on the

hypothesis that the provision of ordering services below the application using these services

is insuÆcient, because it cannot capture the application-speci�c semantics.

Symmetric or decentralized approaches are based on the total order solution by Lam-

port [128], where timestamps are assigned to messages at broadcast time. The algorithm

by Chandra and Toueg [35] executes reliable broadcast in four communication steps with a

weak failure detector, and the solution by Dolev et al. [50] is based on a majority consensus

protocol. Both schemes have O(n2) message complexity. Newer approaches such as the

TO multicast protocol [121] or Scalatom [187] incur message complexity O(r2). Hybrid al-

gorithms using distributed messaging in conjunction with centralized sequencing [186] have

been proposed to achieve better scalability.

The ISIS system [26] implemented two-phase ordering using vector clocks for logical

time keeping, an explicit membership model and layered microprotocols such as CBCAST

for causal ordering and ABCAST for total ordering. Later versions of ISIS have adopted a

ring-based approach.

Centralized reliable broadcast approaches have been proposed in the RBP protocol [37]

with a rotating token to identify the sequencer; the Amoeba system [122], where the

kernel passes messages to a dedicated sequencing processor; or the protocol by Navaratnam

et al. [155], where a primary manager orders messages and forwards them to a secondary

manager heading each local multicast group delivering to application processes. Centralized

reliable multicast protocols such as URGC [8], MTP [15] or XTP [214] follow a similar

principle.

124

Protocols of the ring type, such as Totem [13], RMP [233] or TPM [179] implement

total ordering and feature resilience toward network partitions and process failures. A

related approach is the token-bus protocol MLMO [239], which ensures causal and total

ordering in a hierarchical infrastructure to connect internetworks.

The tree protocol by Ng [159] implements reliable broadcast with source-ordered delivery

to a single group allowing up to k host failures, building a minimum spanning tree between

hosts. Total ordering is achieved using two vectors of time-stamps at each host to keep track

of the last message sent to and received from each neighbor. A broadcast message with

timestamp t is delivered to end processes only if all messages with smaller timestamps have

already been received. The MP protocol by Garcia-Molina and Spauster [87] solves single

source, multiple source, and multiple group total ordering, including the case that messages

are addressed to di�erent, overlapping groups. However, delivery from the last intermediate

host to �nal destinations is unicast, causal ordering is not supported, and reliable failure

detection is required for the protocol to operate resiliently. The improvement by Jia [118,

205] clusters hosts into metagroups representing intersections of overlapping groups and

forming propagation graphs based on metagroup relations to minimize duplicate deliveries,

enhance parallelism in delivery, and shorten propagation graphs. We will incorporate these

signi�cant solutions in our taxonomy of ordered multicast solutions, depicted in Figure 4.1

in Section 4.4.

Various tree-based reliable multicast protocols, TMTP [237], RMTP [173], or Lo-

rax [137], have been proposed in recent years. TMTP builds a source-based tree for
ow

and error control, where participants are organized into domains with a single domain man-

ager responsible for error recovery and local retransmission in each domain. In RMTP,

reliability is achieved by leaf receivers in the delivery tree periodically sending status mes-

sages to their designated receivers (DRs), which cascade their status reports periodically

upward to higher layer DRs, until reaching the sender. Lost packets are recovered by lo-

cal unicast or multicast retransmissions by their DR. Lorax employs positional labels in

125

a shared ack tree for concurrent multicast, however, all three protocols lack support for

multi-source and multi-group ordering.

Yavatkar and GriÆoen [236] discuss the Clique toolkit for tailoring IP multicast group

communication services to the requirements of speci�c applications, and point out the

importance of causal ordering, but omit a solution description. Similarly, Aggrawal and

Paul [2] propose a multicast conferencing architecture based on heuristic Steiner trees,

however, the problem of ordering is not considered. TOM is geared towards adding order-

ing to reliable concurrent multicast or concast, i.e., the multicast-style transmission from

multiple senders to a single receiver [215]. We base our ordering mechanism on Lorax, but

it could also be deployed in TMTP with domain managers, and in RMTP with designated

receivers as intermediate ordering nodes.

Another issue is the choice of the underlying transport protocol if continuous media

are involved. The Tenet approach [44] is focused on delivering performance guarantees,

is reservation-based and includes RMTP (Real-Time Message Transport Protocol), which

is connection oriented with unreliable delivery, and CMTP (Continuous Media Transport

Protocol), which supports periodic network traÆc. Both protocols run above RTIP (Real-

Time Internet Protocol) with guaranteed services based on deterministic and statistical QoS

guarantees. IETF proposes RTP [200] (Real-Time Transport Protocol) for multiparty-

multimedia conferencing, combined with RTCP (RTP Control Protocol), which conveys

information about participants of a conference, as well as media encoding, synchronization,

framing, error detection, encryption, timing, and source identi�cation. RTP does also not

prevent out-of-order delivery, uses ST-II [213] or UDP/IP, and hence cannot assume that the

underlying network is reliable and delivers packets in sequence. It is used for the MBone

tools, such as vat.

4.3 System Model and Assumptions

Our network model N = (H;C) consists of a set of n hosts H and communication links

C, communicating via message passing in the absence of physical clock synchronization. A

126

host is equated with the processes running on it. A multicast group is a set of k hosts in a

network N , which is addressable collectively by a unique group address.

Message dissemination is assumed to be genuine multicast, i.e., a source sends a message

m once to the network interface in a multicast enabled backbone, which replicates m at

multicast-enabled routers k times on its path to k <= n receivers. This stands in contrast to

most prior work on ordered multicasting assuming either unicast, where a message must be

sent r times from a source to the network interface to reach k < n receivers, or broadcast,

where all n hosts in the network are addressed and designated receivers must �lter out

messages targeted at them.

Four cases of group connectivity can be observed: 1) from a single source s to a single

group g, denoted as (s, g); 2) to multiple groups G, (s, G); from multiple sources S to 3) a

single group, (S, g); or 4) to multiple groups, (S, G). Cases 1) and 2) have a simple solution:

sequence numbers �xing the ordering relation are added to outgoing messages at the source

and are delivered in that order at the destinations. Cases 3) and 4) are more diÆcult to

implement, because sending messages from one host may be independent from other hosts,

whereas reception of the same messages may be interdependent and destination groups may

overlap. We are interested in totally ordered multicast from multiple sources to multiple

receivers or receiver groups. We assume that hosts do not fail and network partitions do

not occur. Although a very speci�c case, we consider overlapping groups for our protocol,

because it was also a focal point in previous work on ordered multicast [87, 97, 118]. Hosts

in the intersection of two overlapping multicast groups should receive a messages only once,

if this message is sent to both groups.

In total order, two messages m1 and m2 are sent to a receiver set Rec in the same

relative order. For example, if two sources, A and B, send messages m1 and m2 to receiver

groups G1 and G2, respectively, then hosts in both groups, in particular in the intersection

G1 \ G2, should receive both messages either in the order (m1;m2), or (m2;m1). Atomic

order demands that either all or none of the hosts in Rec receive the messages. A weaker

notion of total order is causal order, based on Lamport's \happened before" relation [128].

127

While a causal precedence relation between two messages preserves their sending order at

delivery time, messages without causal linkage may still be delivered to di�erent hosts in

di�erent order. We assume that all logical point-to-point channels between any pair of

hosts are FIFO, which prevents an earlier message by the same process to be overtaken in

delivery by a later message. If not provided by the network layer, FIFO-delivery over non-

FIFO channels can be implemented by having the source process add a sequence number

to its messages and let destinations deliver according to such sequence numbers [18].

4.4 Taxonomy and Performance Comparison

We classify predominant ordering paradigms using reliable broadcast or multicast into two

main classes, as depicted in Fig. 4.1: 1) geometry-independent protocols such as symmetric,

two-phase or centralized solutions, and 2) geometry-dependent protocols such as ring-based

and tree-based solutions.

RingCentralized2-phase

No Geometry Geometry

Ordered Multicast

Symmetric Tree

MP
Totem
RMP

Jia

NgScalatom RBP

MTP

TPMURGC

Amoeba
Chandra/Toueg

Dolev

XTP
TOM

TO_multicast
ISIS

Navaratnam

Figure 4.1: Taxonomy of ordered multicast solutions.

Some schemes may involve all hosts in the ordering process in a decentralized way,

using message stability properties, versus solutions that burden one or a few hosts with

the responsibility to order messages on behalf of all other hosts in a multicast group. The

main problem in the �rst case is to reach consensus among hosts on ordering patterns,

the problem in the second case is to elect sequencer nodes. Our taxonomy contrasts the

distinction between symmetric and token-site algorithms proposed by Rodrigues et al. [186],

128

which also does not accommodate methods that are neither symmetric nor based on token-

passing, such as tree-based ordering.

We evaluate the processing load X at involved hosts and the message overhead M

required to successfully multicast a message in order from a source to all receivers. We

assume IP-multicast as the dissemination model for all schemes, although all schemes except

TOM have been proposed in broadcast systems. The goal of this comparison is not an

elaborate modeling of the many possible nuances and optimizations of ordering schemes

in conjunction with reliable multicast, but rather a simple comparison of the fundamental

working structure of ordering solutions. To this end we do not include loss probabilities

and assume that all schemes consistently use sender-initiated or receiver-initiated error

recovery [45]. Sender-initiated models place the burden for processing acknowledgments and

requests for corrupt or lost packets on the transmission source. Receiver-initiated solutions,

in contrast, have retransmissions handled in local groups among receivers and sources are

contacted only in cases of unrecoverable packet loss. Receiver-initiated protocols achieve

better scalability because a source is likely only contacted in case of packet loss. Table 4.1

contains the notation used, where each sender is assumed to be receiver. Source nodes are

denoted as SN, ordering nodes as ON, and receiver nodes as RN.

s Number of sources sending message m to receiver set Rec(m)
r Number of receivers of m in Rec(m)
Xf Time to feed a packet from a higher protocol layer
Xp Time to process the transmission of a packet (including retransmissions)
X# Time to process a sequence number check
Yp Time to process a newly received packet
Yf Time to deliver a packet to an end process
X! Processing overhead per message in protocol ! = fS; 2P;C;R; TMP ; TMG; T TOMg
M Number of transmissions for all receivers to receive a message orderly

Table 4.1: Analysis parameters.

4.4.1 Geometry-Independent Protocols

Reliable broadcast solutions are largely designed for fault-tolerant, asynchronous distributed

systems. Such protocols are geometry-independent, i.e., all hosts are assumed to be fully

129

connected with each other, and routing between hosts does not presume any prearranged

host geometry. We subsume symmetric, two-phase and centralized solutions under this

paradigm. Centralized ordering could also be classi�ed as a star-geometry, but the central

node is typically chosen ad hoc based on some election or token-passing scheme among all

nodes.

Symmetric Ordering

In symmetric schemes (S) [35, 50, 187], all hosts partake in the ordering process in a

decentralized way, analogous to a voting process, using message stability properties. SN

disseminate messages reliably to all hosts, which assign a timestamp to each message and

place it in a pending bu�er. For each message m, participant hosts (SN and RN) agree on

a unique order number using timestamp information by running a consensus protocol. A

message with an assigned order number is shifted to the delivery queue and delivered to

end processes in the globally binding order. Thus the number of messages to be exchanged

is a function of the hosts in the system involved in the ordering process. With Xc denoting

the extra cost for the consensus protocol, the expected overhead of a generic symmetric

protocol at SN and RN is

XS
SN = Xf + rXp (4.1)

XS
RN = s(Yp +X# + rXc + Yf)

With broadcast communication, a source node sends a message to r� 1 receivers, which in

turn send r � 1 messages to agree on the �nal sequence number, i.e., MBC = s((r � 1) +

r(r � 1)), that is O(sr2) for s sources. With multicast and r < n receivers, M = s(1 + 2r),

that is one multicast message to all receivers, one multicast per each of the r receivers

to each other, and one timestamp sweep from all receivers to the source. Protocols with

fault-tolerance measures may incur signi�cantly higher cost [187].

130

Two-phase Ordering

In 2-phase ordering (2P) [26], four communication steps are required: a source sends a

message m to a multicast group, where each receiver assigns a priority number to the

message, places m as pending in its local queue, and returns the priority number to the

source. The source selects the highest number and sends it to all receivers, which replace

the original number with the new one, tag the message as deliverable, reorder the queue

and deliver messages heading the queue. The expected overhead at SN and RN is

X2P
SN = Xf + r(Yp +X# + 2Xp) (4.2)

X2P
RN = s(2Yp +X# +Xp + Yf)

If we assume r � s, then X2P = max(X2P
SN ;X

2P
RN) = O(r). With multicast, one message

from s sources to r receivers, r control messages with priority numbers back to each source,

and one �nal control message multicast from the source to the receiver set for each message

are required, i.e., M = s(1 + r).

Centralized Ordering

In centralized ordering (C) [15, 37, 155], a source SN transmits a message m to a sequencer

host, which assigns a unique number to m and forwards it to the receiver set Rec(m), where

it is ultimately delivered to end processes in the order prescribed by sequence numbers. The

sequencer role may rotate among hosts. The expected overhead at SN, ON, and RN is

XC
SN = Xf +Xp (4.3)

XC
ON = s(Yp +X# + rXp)

XC
RN = s(Yp + Yf)

Hence XC = O(sr), and M = s+ r, consisting of s messages from sources to ON, and one

multicast per message from ON to all receivers. If SN = ON, we spare one step.

131

4.4.2 Geometry-Dependent Protocols

Geometry-dependent protocols presume a speci�c host topology to structure the ordering

process and may also rely on the paradigms of centralized or two-phase ordering. We com-

pare standard solutions based on rings and trees, without considering further optimizations

in hybrid combinations of such geometries or other types such as hypercubes [140].

Ring-based Ordering

In ring-based ordering (R) [13, 179, 233], a logical ring imposes a transmission path between

hosts, where each host needs only communicate with its predecessor and successor in the

ring. To multicast a message, a host must possess the token; the token contains requests

for messages to be resent and the highest sequence number for any message broadcast on

the ring; each host maintains an input bu�er containing pending messages with assigned

sequence numbers; on receipt of the token, the host completes processing of messages in

its bu�er by adjusting sequence numbers, resends messages requested in the token, updates

the token information and forwards the token; messages are sent to end processes, when

marked as deliverable. Each SN, as token-site, assumes the role of ON. With Xtk indicating

the token transfer time, the expected overhead at SN and RN in a single ring is

XR
SN = Xf +Xp + r(Yp +X# +Xp) +Xtk (4.4)

XR
RN = s(Yp +X# + Yf)

Hence XR = O(r), if r > s, and the message overhead is at bestM = 2n=k, where 2n is the

number of token transfers required to accept k multicast messages in a ring of n nodes [179].

With k = 1, s sources, and despite r < n receivers, M = 2sn.

Tree-based Ordering

For tree-based ordering (T), we compare the MP protocol by Garcia-Molina and Spauster [87],

and the metagroup approach (MG) by Jia [118, 205] with TOM. Known tree-based reli-

able multicast protocols [137, 173, 237] do not feature ordering. Common to MP, MG and

TOM is the idea of distributing ordering responsibility and load across several nodes on the

132

tree. While MP and MG use group membership information to cluster nodes for optimized

message delivery, TOM uses the end-to-end multicast topology.

The MP protocol has two work phases: 1) the transmission from the source to a primary

host, and 2) the transmission from this host to the receivers. It builds a forest of propagation

trees, where hosts in the intersections of multicast groups are chosen as hop nodes, i.e., roots

of subtrees. A message is �rst sent to these primary hosts, and then propagated downward

in the tree toward the receiver hosts, being ordered on their propagation path, and �nally

unicast to the receiver hosts. The MG protocol clusters hosts from overlapping multicast

groups into metagroups, which do not overlap. Each group has a primary metagroup (PM),

and in each metagroup one member is assigned to be manager. Metagroups are are organized

in a forest of propagation trees, such that the PM of a group is the ancestor of all other

metagroups of the same group in the tree. Messages destined to multicast group G are �rst

sent to PM(G), which propagates the messages along the tree to all other metagroups, which

are subsets of G. The manager of a metagroup broadcasts a message to other members in

its metagroup.

The drawback with MP and MG is the need to compute a logical propagation or meta-

group tree per source as overlays to the end-to-end geometry, which means that in order to

construct such a tree, the computation host(s) must know the membership of all groups.

This approach works only for closed multicast and static groups, and amortizes itself only for

long-lived transmissions between hosts. The processing overhead common to all tree-based

schemes is

XT
SN = Xf +Xp (4.5)

XT
ON = B(Yp +X# +Xp)

XT
RN = Yp + Yf

Hence generally XT = O(B), where B indicates the branching factor of the tree. With

multicast, MMP = s(1 + d) messages are required - one message from each of the s sources

to the primary destination in the subtree, and one broadcast at each level of the subtree,

where d is the subtree depth [87]. MG has three work phases and requires one message to

133

PM(G), d messages to the managers of the deepest metagroups at depth d in the subtree,

and another k messages to the members of the k metagroups containing the target multicast

group, i.e., MMG = s(1+d+k) [205]. TOM requires a multicast from s SNs to the receiver

set, and p unicasts from the SN to the ON, where p is the average path length, and one

�nal multicast from ON to RN, i.e., MTOM = s(2 + p).

4.4.3 Results

Table 4.2 summarizes expected message costs and delays. Centralized and two-phase ap-

proaches incur only two or three message exchange phase respectively, but messaging is

concentrated on speci�c hosts in the session, which may become a bottleneck or fail. Rings

engage all hosts in a session in the transmission process, even when a source and multicast

receiver group constitute only a small portion of the entire session. Trees allow for selective

engagement of hosts on those subbranches or local groups, which are actually a�ected by

the message processing.

Protocol X M

Symmetric (S) O(sr2) s(1 + 2r)

Two-Phase (2P) O(r) s(1 + r)

Centralized (C) O(sr) s+ r

Ring-based (R) O(r) 2sn

Tree-based (MP) O(B) s(1 + d)

Tree-based (MG) O(B) s(1 + d+ k)

Tree-based (TOM) O(B) s(2 + p)

Table 4.2: Average processing overhead X and multicast message cost M .

We assume that there are as many sources as receivers, r = n and s = 1. In the graph,

we neglect the cost to compute and maintain the propagation infrastructure, which may

be substantial for MG and MP in comparison to TOM, which simply relies on a given

acknowledgment tree. We vary the session size between n = [1; 1000], with r = n=10 as the

average size of a receiver multicast group. The MP tree depth has been projected between

d = [1; 8] for simulations with n = 200 and average group size g = [5; 40] [87]. The tree

depth for a metagroup tree has been projected between d = [1; 5] for up to 40 metagroups

134

with g = 50, and an overlapping degree of 10. We also assume that each source sends only

one multicast message per transmission cycle.

Simulations for the Lorax protocol have indicated that optimal ack trees are built

when each nodes supports at least B = 5 neighbors [137]. As a baseline comparison, we

hence choose the average depth of a subbranch in a MP and MG tree as d = logBr, where

B = 5 is the average node degree. The average path length for TOM is chosen as p = h=2,

because roughly half of the height h of the tree needs to be traversed to converge on a

ON. Note that a message comparison provides a limited view on the relative performance

of the protocols, because parallelism in message processing, the processing overhead at

various nodes, and the shape of the tree would need to be considered in a more precise way.

However, concentrating on M alone is suÆcient to express fundamental di�erences between

the approaches. Figure 4.2 plots the multicast message cost of the various schemes under

given assumptions.

0.00

50.00

100.00

150.00

200.00

1.00 10.00 100.00 1000.00

Lo
ad

 (

m
sg

s)

Receiver set r

Multicast message cost for various receiver sets

Symmetric
Centralized

2 Phase
Ring

Tree: MP
Tree: MG

Tree: TOM

0.00

50.00

100.00

150.00

200.00

1.00 10.00 100.00 1000.00

Lo
ad

 (

m
sg

s)

Receiver set r

Multicast message cost for various receiver sets

Symmetric
Centralized

2 Phase
Ring

Tree: MP
Tree: MG

Tree: TOM

Figure 4.2: Average message cost with multicast.

135

The obtained results picture ordering for genuine multicast with one source transmitting.

The multiple source case would reinforce that the throughput of a generic tree-based proto-

col for ordered reliable multicast scales better with varying receiver sets due to distributed

locus and execution of sequencing. Accordingly, symmetric and ring-based methods exhibit

the least scalability, because all nodes are involved in processing messages from all other

nodes. However, rings may permit higher concurrency, with the drawback that latency

increases in large sessions. If all nodes broadcast at the same time, latency may be low,

but a consensus protocol must be run. Two-phase and centralized solutions have similar

message overhead. The centralized ordering method is reasonable for few hosts, but is a

potential bottleneck and single point of failure, particularly for large sessions. A logical hop

between hosts in MP and MG may be multiple hops across long distances in the underlying

multicast routing tree, in contrast to TOM, which operates under the assumption that the

structure of the ack tree mirrors the path information in the multicast routing tree, rather

than using separate propagation graphs. Comparing the three tree-based methods, TOM

performs equal or better than MG and MP, spreading the computational load of order-

ing over multiple nodes in the tree, and is well-suited for dynamically changing multicast

groups, rather than catering to static membership and long-lived transmissions.

4.5 Tree-based Ordered Multicast Protocol (TOM)

In this section, we describe a solution for the ordered multicasting problem using the idea of

staggered ordering of messages on their delivery paths from sources to receivers in the reli-

able multicast tree, which is also used for logical connectivity between hosts for the purpose

of error recovery. In contrast to earlier work, our protocol does not require construction of

a separate logical propagation graph or global clock synchronization, and ordering is dis-

tributed across nodes on the delivery paths between sources and receivers in the multicast

tree. For better load distribution, resilience, and ordered subcasting of messages within

multicast groups, sequencer nodes are elected dynamically, based on address extensions to

hosts in the multicast tree.

136

We assume that a reliable, unordered multicast protocol is running at every host pro-

viding reliable delivery of a message to all operational hosts in a target multicast group.

Ordered multicast should be host minimal, i.e., no other hosts should be a�ected by mul-

ticast of a message than the source and receivers, and message minimal, i.e., the message

size is a function of the size of the receiver set and not of an entire session or network [187].

Total order multicast in a broadcast model is for instance not host minimal. We subscribe

to the view that ordering can be provided as middleware complementing reliable multicas-

ting to motivate reusable coding and easier deployment, as shown in Figure 4.3. We justify

our middleware approach with the observation that many networked multimedia applica-

tions are based on similar media characteristics and a generic ordered delivery semantics.

Our approach contrasts the implementation philosophy taken with theMBone whiteboard

tool [76], which uses Application-Level Framing (ALF) and the reliable multicast protocol

SRM to provide ordering of packets within the application itself. The ALF principle states

that information should be packetized into Application Data Units rather than Packet Data

Units, representing a transmission unit, control unit, and processing unit at the same time.

Figure 4.3: Network protocol stack with ordered multicast.

The Tree-based Ordered Multicast (TOM) protocol relies on an underlying reliable mul-

ticast tree for propagation of ordering information besides acknowledgments and retrans-

missions. This tree is assumed to approximate an underlying shared multicast routing tree,

which for the Internet is built using various protocols such as CBT [19] or PIM-SM [73].

For the following description, we assume that hosts do not fail and network partitions do

not occur. Trees can be constructed per source, which amortizes itself only for long-lived or

137

large-volume transmissions, or dissemination can be based on a shared tree, across which

(negative) acknowledgments are relayed between hosts. In such a tree, sources may change

frequently, only one collective infrastructure must be maintained, and a source need not

know the identity of all receivers in the multicast group. However, the paths from sources

to receivers may be suboptimal.

It is unimportant for the description of the ordering mechanism which reliable multicast

protocol is used. It is also not crucial whether the end-to-end multicast tree is source-based

or shared, but we will exemplify how TOM operates to provide total order in a shared

tree. The key idea in TOM is to multicast a message from a source to a receiver set,

combined with sending ordering information for the message (sequence numbers or time

stamps) to a common node on the tree elected as ordering node for this receiver set (or

multicast group). The ordering node sequences messages assigned to it, and multicasts

binding sequence numbers for �nal delivery to the receiver set, where pending messages are

to be delivered. TOM can be deployed in the form of an API accessible to applications with

ordering needs.

4.5.1 Data Structures

A host in the multicast tree is either a source node (SN), an extra node (EN), a primary node

(PN), an ordering node (ON), or a receiver node (RN). Since every host in the multicast

session runs the ordering protocol, roles are assumed on-the-
y and no dedicated hardware

is needed. SN emit messages to one or more multicast groups in a session. EN are nodes,

which are not a member of the receiver set for a message, and relay messages upward or

downward in the tree without participation in the ordering process. PN are hosts on the

upward ordering path from SN to ON, aggregating control messages in local order and

forwarding revised sequence numbers up in the tree. The ON is the sequencer node for

a message, gathering sequence number bids set on route by PN, deciding on a globally

valid number, and multicasting the message to the receiver set with a �nal and binding

sequence number directive. Sources can be ON as well. RN are message recipients, delivering

138

them to end-processes according to an ON-sanctioned sequence number. Nodes can be

SN for their own messages and assume all other roles for other messages. Edges in the

acknowledgment tree point from children nodes to their parents. It is possible to associate

ordering responsibilities with speci�c, centralized nodes. In aforementioned protocols, such

nodes would be the cores in CBT, rendezvous points in PIM-SM, domain managers in

TMTP, or designated receivers in RMTP, however, we strive to achieve more
exibility in

allocating ordering responsibilities ad hoc and independent of the nodes involved in group

membership management and error recovery.

A TOM message m = (mh;mb) consists of a control header mh and body mb, with

mh = (SN id;Rec; seq#; ts; of), where SN id is the source identi�er, Rec is the target

receiver set (which is either a multicast group, or a collection of individual node identi�ers),

seq# is the sequence number used for ordering, ts is an optional timestamp for ordering

using timing information at nodes, and of is the ordering
ag indicating that a binding

sequence number for the message has been set. mb contains the payload.

Each node maintains two message windows for ordering: a window for unordered mes-

sages (uw), which have been received, but whose delivery is pending, and an ordered mes-

sages window (ow) for messages, which are correctly ordered and can be delivered to local

processes. The sizes of these bu�ers are limited by the number of hosts in the largest mul-

ticast group known at the time of bu�er allocation. Each host programs its local network

interface to subscribe to multicast packets on the same local network, or to receive packets

from routers based on IGMP [74] information.

4.5.2 Operation

TOM performs message ordering in four steps: 1) a message is multicast from each SN to

receivers; 2) a control message is unicast from SN across PN to the ON for the designated

multicast group or transmission, where PN aggregate messages from their subtrees and

hence stagger the ordering process upward in the tree; 3) a binding sequence number for

this message is determined and multicast to the receiver group; and 4) messages are deliv-

139

ered to end hosts according to the agreed-upon sequence numbers. The goal is to deliver

messages consistently in an order all hosts agree to, without requiring sources to know the

constituency of the receiver set. Multicast group information is assumed to be available

from a session directory service.

To allow for selective addressing of hosts and dynamic election of an ON we introduce a

labeling mechanism known from multiprocessor routing and recently proposed for reliable

multicast in the tree-based protocol Lorax [137] and for multicast routing [136]. Labels

allow for open ordered multicast, i.e., addressing of speci�c nodes in the tree without the

need to manifest a separate multicast group or revealing IP-addresses, and facilitate self-

routing of messages to their destinations based on pre�x comparison. Each node i in the

acknowledgment tree is labeled with a unique label l(i), which is the pre�x of all children

of i. The label alphabet is a set of symbols with a de�ned order, such as integers or letters

with lexicographic order, with the alphabet cardinality corresponding to the tree branching

factor B. The heuristics to select an ON is as follows: for each set of messages destined

to a particular multicast group or set of hosts, elect as ON the node, whose label is the

longest common pre�x among all node labels in the receiver set. Each ON gathers sequence

number bids set en route by PNs, deciding on a globally valid number, and multicasts the

respective message to the receiver set with a �nal and binding sequence number directive.

Figure 4.4 illustrates the mechanics of TOM.

y

mx

d

ec 100

10

r 1

101

1011f

10111z

a

b 1000

1001

y

x 10010

10000

m
zm

Figure 4.4: Ordered multicast on acknowledgment tree using address labels (node labels are
only depicted if nodes are involved in transmission.)

140

Node r, as the root of the tree, carries label 1. Node d is the only child in this multicast

session, carrying the pre�x of its parent r concatenated with its own index 0. All three

sources of messages, nodes x; y and z have labels of length 5, being positioned at depth 5 in

the tree. The key idea with using labels for the ordering procedure is to create a con
uence

of messages at strategically optimal nodes in the tree for ordering a number of messages

arriving in the same time window. Rather than depending on a statically assigned ordering

node, ON is dynamically selected per transmission as the node with the longest common

pre�x among the sources of pending messages in the targeted multicast group, without the

need to pass an election token among nodes.

Consider the case that x; y and z want to multicast messages to a multicast group

Rec = fx; y; z; a; b; c; d; e; fg. Each source multicasts its message to Rec, where it is entered

in the order of collective arrival into uw. Control messages mh
x andm

h
y are routed from SN x

and y, respectively, across their parents to the �rst common pre�x node c, are intermittently

ordered at c and, with revised sequence numbers, percolated up in the tree to node d, where

message header mh
z is also arriving. At any node on the path, a bitmask operation on the

matching pre�x indicates which messages must be up-routed or handled locally. At d it is

determined that its label 10 matches the longest common pre�x of SN labels l(x); l(y) and

l(z). Hence, ON(mx;my;mz) = d and node d sequences and multicasts updated message

headers to Rec to signal that the associated messages can be delivered. Once each receiver

in Rec receives the ordering information per message m with of = true from ON, it shifts

m into the ow, where the heading element is delivered to end-processes �rst.

Similarly, messages to a multicast group located in a left subbranch of the acknowledg-

ment tree can be handled locally by the ON of that group, without a�ecting any nodes

in other segments of the tree. The only overhead incurred in the ordering process is the

control message unicast from SNs to some ON, plus one multicast to the receiver set. Total

order is hence achieved in a di�using computation, where the ordering process is carried out

along with the message multicast, but neither are receiver nodes burdened with sorting out

messages, nor do they have to know the identity of ON. Through the percolation process

141

from SN to ON, usage of the same sequence number for a speci�c message to all receivers

in a multicast group is guaranteed.

Labels allow open ordered multicast, i.e., addressing of speci�c nodes in the tree with

an ordered message sequence without the need to manifest a separate multicast group, and

for self-routing of messages to their destinations based on pre�x comparison. Figure 4.5

speci�es the ordering algorithm of TOM() that an on-tree host i may use to send a message

m totally ordered to a receiver set Rec (hosts are assumed to carry pre�x labels). Procedure

TOM send()multicasts a message to the receiver set and unicasts the control header towards

the dynamically elected ON; TOM cast() self-routes messages to a receiver based on pre�x

labels; and TOM receive() checks, whether a node is EN, PN, ON, or RN and takes according

actions:

4.5.3 Causal and Atomic Delivery

Consider the special case of ordering with this mechanism, when messages must be sent to

two di�erent, but overlapping multicast groups, e.g., G1 = fa; b; cg and G2 = fc; d; e; fg,
with G1\G2 = c. Nodes in each group must receive a given message sequence in total order,

and node c must not receive contradictorily ordered messages. This case can be solved if

individual membership in target groups is known. Instead of choosing the node with the

longest common pre�x as ON, the nodes with multiple membership will then be the ordering

cores for a transmission, prescribing their sequencing decisions to their respective ON. In

our case, c will be instrumental in informing d about the sequence in group G1, such that

d can construct a sequence from it, which is compatible with G2.

While total order of messages within one or more destination multicast groups is ensured,

causal order among messages is not preserved in the above algorithm. To provide causality,

the sequence numbers of messages to be ordered must encode causal dependency information

before reaching ON. This can be achieved for instance by Lamport clocks maintained by

all nodes belonging to a multicast group, and updating sequence numbers in the staggered

ordering process to preserve the causal relations. To implement atomicity in delivery, that

142

proc TOM (node i)
Cobegin

TOM send(); TOM receive()
Coend
proc TOM send (message mb, receivers Rec)
Begin /* i is SN */

If m 6= 0 And i = SN(m)

Then mh = (l(i), Rec, seq #, , false)
m = (mh;mb)
reliable multicast(m, Rec)
TOM cast(mh, parent(i))

End
proc TOM cast (message m, receiver rec)
Begin /* self-route from node i to rec */

If jl(i)j > jl(receiver)j)
OrIf l(i) 6= pre�x(rec)
Then If 9 parent(i)

Then unicast(m) to parent(i)
Else If 9 children(i)

Then unicast(m) to child(i)
where l(child(i)) = pre�x(l(rec))

End
proc TOM receive (message m, receivers Rec)
Begin

If i =2 Rec(m) /* i is EN */
Then unicast(m) to parent(i);

ElseIf of(m) = false And mb = 0 /* i is PN */
Then tag m with new seq#;

TOM cast(m, parent(i))
ElseIf l(i) 2 Rec /* i is RN */

Then If mb 6= 0 And of(m) = false
Then insert (mb, uw)
Else shift m from uw to ow

deliver(head(ow), local processes)
Else compute longest common pre�x lcp = (m, pm)

If lcp = l(i) /* i is ON */
And (query parent(i) for pending msgs = 0)
Then Forall msgs in uw select seq#s

shift msgs with set seq#s into ow

TOM cast(head(ow, Rec))
End

Figure 4.5: TOM procedures for ordered multicast from node i to other nodes and for processing
received messages from other nodes for ordered local delivery.

is, either all RN in Rec(m) receive message m or none, another message exchange between

all RN and ON must be introduced, where all RN signal reception of mh and mb to ON,

and ON multicasts another ok to deliver(m) signal to all RN in the group to collectively

proceed with the delivery of mb.

143

4.5.4 Resilience

Resilience is another important aspect in TOM operation that we only brie
y discuss for

space reasons. Ordering can be linked with several types of reliability [87], including 1)

giving no guarantee on the reliability of ordered deliveries, 2) assuming only inconsistent

deliveries with failed hosts, 3) inciting roll-backs at operational hosts to repair inconsistent

deliveries, and 4) the assumption that inconsistencies never happen. Furthermore, another

set of choices addresses the time it takes to deliver a message, and to which recipients the

delivery guarantee extends. In the event of host or link failures, the ordering tree may

be partitioned into subtrees, each of which may continue to run TOM. A vanished ON

will be replaced by the next common node in the destination set according to the label

semantics. In operational subgroups, the semantics of reliable delivery is preserved for all

multicast operations. Failure and recovery events must be made known to all operational

hosts in an ordered fashion. Partitioned subbranches of the ordering tree may rejoin as

soon as communication paths between them are reestablished. A link failure is detected,

when a host fails to probe a neighbor node on the tree before expiration of a local timer.

A host failure is detected when a host with a pending queue of messages does not receive

an expected message within a timeout period.

4.6 Discussion

In this chapter, we proposed adding ordering services to tree-based concurrent reliable

multicast. Ordered delivery of multimedia data from multiple sources is essential for a

growing number of Internet applications supporting near-synchronous information sharing,

such as distributed interactive simulations or distance learning environments, where ordered

delivery preserves data consistency and the coherency of group activities. Previous work

on end-to-end multicasting protocols has circumvented the issue of ordering by attributing

it to the application layer. We argued that support for ordering below the application level

allows for more rapid design and deployment of shared applications.

144

A novel taxonomy of ordered broadcast and multicast solutions and a basic compar-

ison of message complexities indicated that using the underlying infrastructure of trees

predominant in current IP-multicasting solutions achieves the same or better eÆciency in

comparison with previous approaches. The TOM protocol is a blueprint for an ordering

scheme relying on a mirror copy of a logical tree geometry used for concurrent, reliable

multicast. The protocol consequently adapts to rapid changes in the multicast topology

and surpasses contending solutions in terms of scalability, eÆciency and practicality. TOM

uses aggregation of ordering primitives to minimize coordination traÆc among nodes, in

resemblance to a two-phase ordering protocol, and assigns address extensions to hosts for

self-routing of messages and dynamic distribution of the processing load. This feature im-

plies scalability and resilience for large-scale multicasting applications. Similar to the HGCP

protocol introduced in Chapter 3, TOM supports ordering of messages for anonymous and

overlapping receiver groups in shared trees, and permits extensions to support causal and

atomic ordered multicast.

145

Chapter 5

Conclusion

In this dissertation, we have investigated protocol-based network support for group coor-

dination in telecollaborative systems, in particular for interactive, real-time exchange of

multimedia information. While much research has been invested in the last decade to cre-

ate collaborative multimedia environments, work on
oor control and ordered multicast

has been comparatively scarce and dispersed. We summarize our contributions and outline

opportunities for future work.

5.1 Summary and Contributions

A comprehensive framework for group coordination in networked multimedia systems has

been presented. The framework has its foundation in a formal model of group coordination

and collaboration, related to hierarchical session control and role-based session participa-

tion, revolving around the notion of turn-taking in interactive groupwork. Important design

issues for such an architecture have been discussed in conjunction with the various media

and session types and their properties. Our coordination model does not represent a panacea

for the many open problems encountered in groupware, CSCW and networked multimedia

systems. Rather, we intend it to be an integrative step towards a better understanding of

group collaboration, and more
exible, rich services to facilitate it. Support of sessions with

many users and of wide scope encounters barriers in �rewalls and security infrastructures,

which must be solved before group coordination services can be widely deployed.

146

Several aspects regarding
oor control services in networked multimedia systems have

been addressed. First, we proposed a model of dynamic role-based access for continuous,

ephemeral information, as we incur it in multimedia systems. This serves as a foundation

for a novel taxonomy of
oor control protocols, entailing user and system-driven control

schemes. We tackled
oor control from the user's end by elaborating on interface design,

re
ecting on the organizational structure of face-to-face meetings, and the stages of interac-

tion between users with regard to
oor management. Well-designed
oor control provides

variable granularity, consistency checks and content-synchronization of workspaces, correct

and fair
oor assignment, adaptability to session and media changes, and graceful degrada-

tion, when individual hosts drop out of a session.

We then discussed methods to implement the various schemes, and alternate policies

for role-based
oor management. A comparative performance analysis for the various
oor

control mechanisms in conjunction with standard service policies showed that
oor control in

a multicast environment performs best in a tree infrastructure logically organizing the hosts.

To date, little material is available containing a more detailed description or speci�cation

of a
oor control mechanism, probably because
oor control will not be an urgent issue

to a large community of users until stable collaboration environments at a larger scale

and scope and with more alluring communication capabilities are available to the Internet

public. We have presented such a �rst speci�cation for two protocols, one for networks

without a speci�c host geometry, and one operating in a logical shared control tree, whose

operation is correlated to a tree-based, end-to-end reliable multicast protocol. Some of these

developments and results on
oor control have been tested in the collaborative visualization

system CSpray, a web-based control interface CCam for collaborative usage of a motorized

camera, and a prototype for a distributed shared whiteboard.

A case has been made for adding ordering services to tree-based concurrent reliable

multicast, based on the notion that ordered delivery of multimedia data is essential to

a growing number of Internet applications supporting telepresence and near-synchronous

information sharing. Looking at reliable multicasting for such applications, we observed

147

that ordering services have not been considered as an integrated component in data dis-

semination. We proposed a taxonomy for ordering schemes integrating reliable broadcast

and multicast solutions. A simple performance comparison showed that ordering in trees

surpasses contending solutions in terms of scalability, eÆciency and practicality.

The TOM protocol stands in contrast to previous reliable broadcast solutions tailored

to local area networks, where ordering is performed assuming symmetric communication,

or exchange of messages based on centralized, ring-based or propagation geometries. Col-

laborative applications can be developed faster by using such ordering middleware services,

rather than having to implement their own ordering apparatus. TOM is a �rst step in the

integration of middleware services with underlying transport structures, such as reliable

multicast trees, using staggered ordering of messages on their paths from sources to the re-

ceivers. Workload is hence distributed, the infrastructure used for ordering is cohesive with

the one for reliability provision, and the addition of address labels yields eÆcient ordering

for multiple groups and subgroups. Opposite to previous solutions, TOM does not require

computation of separate graphs for propagating ordering information. It implements or-

dering in a di�using computation, where messages are ordered on their delivery paths from

sources to receivers, and each node deals only with its children and parent node instead of

the entire multicast group. TOM can be adapted to various tree-based multicast protocols

proposed in recent years.

5.2 Future Work

The work in this thesis can be furthered in various directions.

Floor control is a promising methodology to improve cooperative behavior between

users to utilize distributed system components and administer interactive groupwork more

e�ectively. For lack of user evaluation and experience with the design of coordination

protocols, our proposed methods for evaluating such mechanisms must be complemented

by simulation and �eld tests. Future work on
oor control may focus on more sophisticated

protocols to direct hando� between users, concurrent assignment of
oors for the same media

148

within non-con
icting subsets of a multicast group, fault tolerance measures in control, and

improved user interfaces integrating global and localized views of shared information in both

the spatial and temporal dimension, so that users can individually size their \portholes"

into collaborative space, and go back in time to trace or undo collaborative actions.

Voice, video or other media types and their interplay in relation to conference con-

duction and
oor control must be studied to better understand what type of
oor control

mechanism and interface are appropriate. Interaction patterns vary with each resource and

turn-taking for speci�c media may be predictable based on observed interaction patterns.

For instance, an adaptive
oor control model for speech could predict the next speaker using

syntactic segmentation, recognizing rhetorical pauses vs. actual conclusions of an utterance.

Time zones and cultural di�erences are a major problem in establishing global conferencing

sessions. Mechanisms could be devised to allow users to replay and edit collaborative work

from other groups asynchronously and subsequently integrate such processes in synchronous

work processes, interfacing o�ine and online collaborative work.

Fairness is important for successful implementation of
oor control as well, considering

that users on slow links or operating from large distances may not be as successful in

obtaining the
oor as other more closely located users. Fairness is largely an issue of

�nding the right match between session type, interaction modes, and
oor policies. The

presented bare-bones eÆcacy analysis can be extended to include queuing of requests, and

more elaborate metrics to cope with host or network failures. Measurements on traÆc
ow

and
oor exchanges in current real-world telecollaboration systems must be undertaken to

validate the results. An online library of API routines may be useful for rapid prototyping

of CME, which developers of collaborative systems could tap into to integrate
oor control

support for speci�c tasks and session models. At the borderline to distributed arti�cial

intelligence, the integration of adaptive
oor control with goal-based collaboration, such as

communicator, synchronizer, and archiver roles in work
ow models [98], and with agent-

based collaboration [65], using negotiation patterns to agree on
oors, is another salient

research area.

149

Our work is more geared toward the underlying network mechanisms to provide group

coordination support; however, human factors and CSCW studies should complement these

technical developments to ensure that systems are accepted by users. Mechanisms to intel-

ligently �lter, jointly review and pass on collaborative work e�orts are another extension

of this work. With regard to user interfaces, novel ways of presenting shared multimedia

content and foster telepresence and mutual awareness need to be investigated. Telecollabo-

rative interfaces, currently still relying on the windows, icons, mouse and pointer look and

feel, may be strongly improved by adaptation to 3D, virtual reality, and multi-modality

to achieve more realistic, natural and immersive telepresence. New forms of signaling and

manifesting coordination and control in such interfaces will be needed. For instance, the

integration of network coordination support with graphics applications, such as collision

control in virtual reality systems [110] may achieve a more realistic representation and

control of movement in virtual territories and within object boundaries.

Extension of our work on ordered multicast may address adaptation to novel methods

for reliable multicasting, more sophisticated performance comparisons including packet loss

probabilities, and taking into account fault tolerance, as it has been investigated in the

literature for reliable broadcast protocols. Simulation studies and development of tools

using ordered multicast are still lacking, as well.

The group coordination architecture described lacks security measures. Work on secure

collaboration in the form of authentication and encryption is essential for synchronous

multiparty, multipoint interaction in intranets, and even more so for Internet collaboration.

While forging of control information or tapping into collaborative discourse may be of

limited success when hosts exchange only incremental pieces of information about local

shared workspaces without context, intruders may still obtain valuable pieces of information.

Since there may be no universal collaborative application suitable for all types of groupwork,

much work has to be invested in rationalizing and streamlining the process of lightweight

collaborative software development, both for transparent and dedicated CME.

150

Considering the importance of temporal relationships in delivery and joint presenta-

tion of multimedia streams, spatiotemporal synchronization for highly-interactive multicast

groups under the premises of scalability and adaptability towards network changes is an-

other building block in a group coordination architecture that our work can be extended

towards. In particular, previous work on synchronization has largely excluded the problems

of rapidly changing multimodal sources, variable receiver groups, and ad hoc content in

multicast groups in the absence of a global clock.

Telecollaboration is still in its infancy, both in understanding the process of working

together in a networked multimedia system, as well as in the network and systemic tech-

nology facilitating it. Its impact on computing and the ways how people relate through

computers will become more tangible in the coming years. With the surge of ubiquitous

computing [231], group coordination services for mobile devices [79] will be needed to sup-

port collaboration with hand-held devices and wearable computers. In contrast to the many

current monolithic protocols serving as experimental platforms for networked activity co-

ordination, compactness, modularity and fast deployment may be important factors for

future lightweight mobile collaboration support. Web-based collaboration is another young

research �eld, which evolves hand-in-hand with developments in web-centric programming

languages. Any of the proposed work extensions must go along with deepened studies on

human factors and user interaction in computer-supported cooperative work systems as a

foundation for understanding synchronous group collaboration. In conclusion, we project

that sophisticated coordination and collaboration services in networked multimedia systems

will be an important component in \killer applications" for upcoming years in computing,

and deserve focused research e�orts.

151

Bibliography

[1] H. M. Abdel-Wahab, S.-U. Guan, and J. Nievergelt. Shared workspaces for group
collaboration: an experiment using Internet and UNIX interprocess communications.
IEEE Comm. Mag., 26(11):10{16, Nov. 1988.

[2] S. Aggrawal and S. Paul. A
exible protocol architecture for multi-party conferencing.
In Proc. 5th Int. Conf. on Computer Communications and Networking, pages 81{91,
Rockville, Maryland, Oct. 1996.

[3] D. Agrawal and A. El Abbadi. Ordered sharing: A new lock primitive for database
systems. Information Systems, 20(5):361{92, July 1995.

[4] D. Agrawal, J. L. Bruno, A. El Abbadi, and V. Krishnaswamy. Managing concurrent
activities in collaborative environments. Technical Report TRCS94-05, UCSB, Santa
Barbara, CA, 1994.

[5] L. Aguilar, J. J. Garcia-Luna-Aceves, D. Moran, E. J. Craighill, and R. Brungardt.
Architecture for a multimedia teleconferencing system. In Proc. ACM SIGCOMM,
pages 126{136, Aug. 1986.

[6] S. R. Ahuja and J. R. Ensor. Coordination and control of multimedia conferencing.
IEEE Comm. Mag., 30(5):38{43, May 1992.

[7] S. R. Ahuja, J. R. Ensor, and S. E. Lucco. A comparison of application sharing
mechanisms in real-time desktop conferencing systems. SIGOIS Bulletin, 11(2-3):238{
48, Apr. 1990.

[8] R. Aiello, E. Pagani, and G. P. Rossi. Causal ordering in reliable group communica-
tion. In Proc. ACM SIGCOMM, pages 106{115, San Francisco, CA, Sept. 1993.

[9] I. F. Akyildiz and W. Yen. Multimedia group synchronization protocols for integrated
services networks. IEEE J. on Sel. Areas in Comm., 14(1):162{173, Jan. 1996.

[10] M. Alfano and R. Sigle. Controlling QoS in a collaborative multimedia environment. In
Proc. of the 5th Int. Symposium on High-Performance Distributed Computing (HPDC-
5, Syracuse, NY, Aug. 1996. IEEE.

152

[11] M. Altenhofen, J. Dittrich, R. Hammerschmidt, T. Kappner, C. Kruschel, A. Kuckes,
and T. Steinig. The BERKOM multimedia collaboration service. In Proc. ACM
Multimedia'93, pages 457{463, Anaheim, CA, Aug. 1993.

[12] E. Amir, S. McCanne, and R. Katz. Receiver-driven bandwidth adaptation for light-
weight sessions. In Proc. ACM Multimedia, pages p.415{426, Seattle, WA, Nov. 1997.

[13] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Ciarfella. Fast
message ordering and membership using a logical token-passing ring. In Proc. Int.
Conf. on Dist. Comp. Sys. (ICDCS), pages 551{560, Pittsburgh, PA, May 1993. IEEE.

[14] V. Anupam and C. Bajaj. Collaborative multimedia scienti�c design in Shastra. In
Proc. ACM Multimedia, pages 447{480, Aug. 1993.

[15] S. Armstrong, A. Freier, and K. Marzullo. Multicast transport protocol. RFC 1301,
Feb. 1992.

[16] L. C. Austin, J. K. Liker, and P. L. McLeod. Determinants and patterns of control
over technology in a computerized meeting room. In Proc. CSCW'90, pages 39{52,
Los Angeles, CA, Oct. 1990. ACM.

[17] R. Axelrod. The Evolution of Cooperation. Basic Books, Inc., New York, NY, 1984.

[18] �O. Babaoglu and K. Marzullo. Consistent Global States of Distributed Systems: Fun-
damental Concepts and Mechanisms, chapter 4, pages 55{96. In: S. Mullender (Ed.)
- Distributed Systems, Addison-Wesley, 1993.

[19] T. Ballardie, P. Francis, and J. Crowcroft. Core based trees (CBT) - an architecture
for scalable inter-domain multicast routing. In Proc. SIGCOMM'93 - Communications
Architectures, Protocols and Applications, pages 85{95, San Francisco, CA, Sept. 1993.
ACM.

[20] N. S. Barghouti and G. E. Kaiser. Concurrency control in advanced database appli-
cations. ACM Computing Surveys, 23(3):269{317, Sep. 1991.

[21] D. E. Bell and L. J. La Padula. Secure computer system: Uni�ed exposition and
multics interpretation. Technical Report MTR-2997, Mitre Corp., Bedford, MA,,
July 1975.

[22] G. Bell. Telepresence. Presentation at UC/Berkeley, Feb. 1996.

[23] R. Bentley, T. Rodden, P. Sawyer, and I. Sommerville. Architectural support for
cooperative multiuser interfaces. Computer, pages 37{46, May 1994.

[24] P. A. Bernstein and N. Goodman. Concurrency control in database systems. ACM
Computing Surveys, 13(2):185{221, June 1981.

[25] D. Bertsekas and R. Gallager. Data networks. Prentice Hall, Englewood Cli�s, N.J.,
2nd edition, 1992.

153

[26] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group
multicast. ACM Trans. on Computer Systems, 9(3):272{314, Aug. 1991.

[27] S. A. Bly, S. R. Harrison, and S. Irwin. Media Spaces: Bringing people together in
a video, audio and computing environment. Comm. of the ACM - Special Issue on
Multimedia in the Workplace, 36(1):28{47, Jan. 1993.

[28] N. Borenstein and N. Freed. MIME (Multipurpose Internet Mail Extensions) Part
One: Mechanisms for specifying and describing the format of Internet message bodies.
RFC 1521, Sept. 1993.

[29] C. Bormann, J. Ott, and C. Reichert. Simple conference control protocol. IETF
Internet Draft draft-ietf-mmusic-sccp-00.txt, June 1996.

[30] J. Boyd. Floor control policies in multi-user applications. In INTERACT'93 and
CHI'93 conference companion on Human factors in computing systems, pages 107{
108. ACM, 1993.

[31] M. Broy. Formalization of distributed, concurrent, reactive systems. In Formal De-
scription of Programming Concepts (E. J. Neuhold and M. Paul (Eds.)), pages 319{
361. Springer-Verlag, Berlin, 1992.

[32] K. S. Candan, V. S. Subrahmanian, and P. V. Rangan. Towards a theory of collabo-
rative multimedia. In Proc. 3rd IEEE Int. Conference on Multimedia Computing and
Systems, pages 279{282, Hiroshima, Japan, June 1996.

[33] W. Cellary, E. Gelenbe, and T. Morzy. Concurrency Control in Distributed Database
Systems. Studies in Computer Science and Arti�cial Intelligence. North-Holland,
Amsterdam, Netherlands, 1988.

[34] V. Cerf, P. T. Kirstein, and B. Randell. Network and infrastructure user requirements
for transatlantic research collaboration. RFC 1210, March 1991.

[35] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225{267, March 1996.

[36] E. Chang. Protocols for group coordination in participant systems. In M.M. Taylor,
F. Neel, and D.G. Bouwhuis (Eds.) - The Structure of Multimodal Dialogue, pages
229{247. North-Holland: Elsevier Science, 1989.

[37] J. M. Chang and N. F. Maxemchuck. Reliable broadcast protocols. ACM Transactions
on Computer Systems, 2(3):251{273, August 1984.

[38] C. Charlsson and O. Hagsand. DIVE - a platform for multi-user virtual environments.
Computers & Graphics, 17(6):663{669, Nov.-Dec. 1993.

[39] D. R. Cheriton and D. Skeen. Understanding the limitations of causally and totally
ordered communication. Operating Systems Review, 27(5):44{57, Dec. 1993.

[40] E. F. Churchill and D. Snowdon. Collaborative virtual environments: an introductory
review of issues and systems. Virtual Reality, 3(1):3{15, 1998.

154

[41] E. J. Craighill, R. Lang, M. Fong, and K. Skinner. CECED: A system for informal
multimedia collaboration. In Proc. ACM Multimedia, pages p.437{445, Anaheim, CA,
Aug. 1993.

[42] E. J. Craighill, R. Lang, M. Fong, K. Skinner, and K. Gruenefeldt. SCOOT: An
object-oriented toolkit for multimedia collaboration. In Proc. ACM Multimedia, pages
41{50, San Francisco, CA, Oct. 1994.

[43] T. Crowley, P. Milazzo, E. Baker, H. Forsdick, and R. Tomlinson. MMConf: An
infrastructure for building shared multimedia applications. In Proc. ACM CSCW,
pages 637{650, Los Angeles, CA, Oct. 1990.

[44] D. D. Ferrari, A. Banerjea, and H. Zhang. Network support for multimedia a dis-
cussion of the Tenet approach. Computer Networks and ISDN Systems, 26(10):1267{
1280, July 1994.

[45] D. D. Towsley, J. Kurose, and S. Pingali. A comparison of sender-initiated and
receiver-initiated reliable multicast protocols. IEEE Journal on Sel. Areas in Comm.,
15(3):398{406, Apr. 1997.

[46] K. S. Decker and V. R. Lesser. Designing a family of coordination algorithms. Tech-
nical Report TR 94-14, Univ. of Massachusetts, Amherst, MA, Aug. 1995.

[47] S. Deering. Host extensions for IP multicasting. RFC-1112, August 1989.

[48] G. Dermler, T. Gutekunst, B. Plattner, and E. Ostrowski. Constructing a distributed
multimedia joint viewing and tele-operation service for heterogeneous workstation en-
vironments. In Proc. IEEE 4th Workshop on Future Trends of Distributed Computing
Systems, pages 8{15, Lisbon, Portugal, Sep. 1993.

[49] C. Diot and L. Gautier. A distributed architecture for multiplayer interactive appli-
cations on the internet. IEEE Network, 13(4):6{15, July-Aug. 1999.

[50] D. Dolev, S. Kramer, and D. Malki. Early delivery totally ordered multicast in
asynchronous environments. In Int. Symposium on Fault-Tolerant Computing, pages
544{553, Toulouse, France, June 1993. IEEE Comput. Soc.

[51] H.-P. Dommel and J. J. Garcia-Luna-Aceves. Design issues for
oor control protocols.
In Proc. IS&T SPIE Multimedia Computing and Networking, pages 305{16, San Jose,
CA, Feb. 1995.

[52] H.-P. Dommel and J. J. Garcia-Luna-Aceves. Floor control for activity coordination in
networked multimedia applications. In Proc. IEEE APCC (Asian-Paci�c Conference
on Communications), pages 405{409, Osaka, Japan, June 1995.

[53] H.-P. Dommel and J. J. Garcia-Luna-Aceves. Floor control for networked multi-
media applications. ACM SIGCOMM Workshop on Middleware, Cambridge, MA,
http://www.acm.org/sigcomm/sigcomm95/workshop/, Aug. 1995.

155

[54] H.-P. Dommel and J. J. Garcia-Luna-Aceves. Floor control for multimedia confer-
encing and collaboration. Multimedia Systems J. (ACM/Springer), 5(1):23{38, Jan.
1997.

[55] H.-P. Dommel and J. J. Garcia-Luna-Aceves. Network support for turn-taking in mul-
timedia collaboration. In Proc. IS&T SPIE Multimedia Computing and Networking,
pages 304{315, San Jose, CA, Feb. 1997.

[56] H.-P. Dommel and J. J. Garcia-Luna-Aceves. Comparison of
oor control protocols
for collaborative multimedia environments. In Proc. SPIE Int. Symp. on Voice, Video
and Data Comm., pages 307{318, Boston, MA, Nov. 1998.

[57] H.-P. Dommel and J. J. Garcia-Luna-Aceves. A novel group coordination protocol
for for collaborative multimedia systems. In Proc. IEEE Int. Conf. on Systems, Man,
and Cybernetics, Vol. 2, pages 1225{1230, San Diego, CA, Oct. 1998.

[58] H.-P. Dommel and J. J. Garcia-Luna-Aceves. EÆcacy of
oor control protocols in
distributed multimedia collaboration. Cluster Computing J., 2(1):17{33, 1999.

[59] H.-P. Dommel and J. J. Garcia-Luna-Aceves. Group coordination support for syn-
chronous Internet collaboration. IEEE Internet Computing Magazine, Special Issue on
Multimedia and Collaborative Computing over the Internet, pages 74{80, Mar./Apr.
1999.

[60] H.-P. Dommel and J. J. Garcia-Luna-Aceves. Multisites coordination in shared mul-
ticast trees. In Proc. Int. Conf. on Parallel and Distributed Processing Techniques
and Applications (PDPTA'99), Las Vegas, NV, June/July 1999.

[61] H.-P. Dommel and J. J. Garcia-Luna-Aceves. Ordered end-to-end multicast for dis-
tributed multimedia systems. In Proc. 33rd Hawaii Int. Conf.on System Sciences,
Maui, Hawaii, Jan. 2000. Forthcoming.

[62] P. Dourish and V. Bellotti. Awareness and coordination in shared workspaces. In
Proc. ACM CSCW, pages 107{114, Nov. 1992.

[63] P. Dourish and S. Bly. Portholes: Supporting awareness in a distributed work group.
In Proc. ACM CHI, pages 541{7, Monterey, CA, May 1992.

[64] S. Easterbrook. CSCW: Cooperation or Con
ict? Computer Supported Cooperative
Work. Springer-Verlag, London, 1993.

[65] E. A. Edmonds, L. Candy, R. Jones, and B. Sou�. Support for collaborative design:
Agents and emergence. Comm. of the ACM, 37(7):41{47, July 1994.

[66] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 399{407, Portland, OR, 1989.
ACM Press, New York.

[67] C. A. Ellis, S. J. Gibbs, and G. L. Rein. Groupware - some issues and experiences.
Comm. of the ACM, 34(1):38{58, Jan. 1991.

156

[68] E. Ellmer, G. Pernul, G. Quirchmayr, and A Min Tjoa. Access controls for cooperative
environments. SIGOIS Bulletin, 15(2):24{27, Dec. 1994.

[69] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems, 2nd Ed. The
Benjamin/Cummings Publ. Company, Redwood City et. al., 1994.

[70] Inst. Electr. & Electron. Eng. IEEE standard for Distributed Interactive Simulation
- Application protocols. Report, New York, NY, Aug. 1998.

[71] D. C. Engelbart. Authorship provisions in AUGMENT. In Proc. Twenty-Eighth
IEEE Computer Society Int. Conf., pages 465{72, San Francisco, CA, Feb./March
1984. IEEE.

[72] H. Eriksson. MBone: the multicast backbone. Comm. ACM, 37(8):54{60, Aug. 1994.

[73] D. Estrin, A. Helmy D. Farinacci, D. Thaler, S. Deering, V. Jacobson M. Handley,
P. Sharma C. Liu, and L. Wei. Protocol independent multicast-sparse mode (PIM-
SM). RFC2362, June 1998.

[74] W. Fenner. Internet Group Management Protocol, Version 2. RFC 2236, Nov. 1997.

[75] D. F. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yemini. Economic models for
allocating resources in computer systems. In S.H. Clearwater (Ed.) { Market-based
control: a paradigm for distributed resource allocation, pages 156{183. World Scien-
ti�c, 1996.

[76] S. Floyd, V. Jacobson, S. McCanne, C.-G. Liu, and L. Zhang. A reliable multicast
framework for light-weight sessions and application level-framing. In Proc. ACM
SIGCOMM, pages 342{356, Cambridge, MA, Aug./Sep. 1995.

[77] F. Fluckiger. Understanding Networked Multimedia. Prentice Hall, Englewood Cli�s,
NJ, 1995.

[78] J. W. Forgie. Voice conferencing in packet networks. In Proc. Int. Conf on Commu-
nications (ICC'80), pages 21.3/1{4, New York, NY, June 1980. IEEE.

[79] G. H. Forman and J. Zahorjan. The challenges of mobile computing. Computer,
27(4):38{47, April 1994.

[80] G. W. Furnas and B. B. Bederson. Space-scale diagrams: Understanding multiscale
interfaces. In Proc. ACM CHI, Denver, CO, May 1995.

[81] H. Gajewska, J. Kistler, M. S. Manasse, and D. D. Redell. Argo: A system for
distributed collaboration. In Proc. ACM Multimedia, pages 433{440, San Francisco,
Oct. 1994.

[82] J. J. Garcia-Luna-Aceves, E. J. Craighill, and L. Aguilar. MOSAIC - a model for
computer-supported collaborative work. In Proc. MILCOM 87, pages 19{22, New
York, NY, Oct. 1987. IEEE.

157

[83] J. J. Garcia-Luna-Aceves, E. J. Craighill, and R. Lang. An open-systems model
for computer-supported collaboration. In Proc. 2nd IEEE Conference on Computer
Workstations, pages 40{51, Santa Clara, CA, March 1988. IEEE.

[84] J. J. Garcia-Luna-Aceves, E. J. Craighill, and R. Lang. Floor management and
control for multimedia conferencing. In Proc. IEEE Multimedia, 2nd COMSOC Int.
Multimedia Comm. Worksh., Ottawa, Can., Apr. 1989.

[85] H. Garcia-Molina. Elections in a distributed computing system. IEEE Trans. On
Computers, 1(Jan.):48{59, C-31 1982.

[86] H. Garcia-Molina and D. Barbara. How to assign votes in a distributed system. J.
ACM, 32(4):841{860, 1985.

[87] H. Garcia-Molina and A. Spauster. Ordered and reliable multicast communication.
ACM Trans. on Comp. Sys., 9(3):242{271, Aug. 1991.

[88] L. Gong. Enclaves: Enabling secure collaboration over the Internet. IEEE Journal
on Selected Areas in Communications, 15(3):567{575, April 1997.

[89] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan-
Kaufmann, San Mateo, CA, 1993.

[90] S. Greenberg. Personalizable groupware: Accommodating individual roles and group
di�erences. In Proc. European Conf. on Computer Supported Cooperative Work (EC-
SCW'91), Amsterdam, Sep. 1991.

[91] S. Greenberg and D. Marwood. Real-time groupware as a distributed system: Con-
currency control and its e�ect on the interface. Technical Report 94/534/03, Dept. of
Computer Science, Univ. of Calgary, Calgary, Alberta, Can., 1994.

[92] C. Greenhalgh and S. Benford. MASSIVE: A collaborative virtual environment for
teleconferencing. ACM Trans. on Computer-Human Interaction, 2(3):239{61, Sept.
1995.

[93] I. Greif and S. Sarin. Data sharing in group work. In Computer Supported Cooperative
Work: A Book of Readings, pages 477{508. Morgan-Kaufman, 1988.

[94] H. P. Grice. Logic and conversation. In P. Cole and J. Morgan (Eds.) Syntax and
Semantics 3: Speech Acts. Academic Press, 1975.

[95] J. Grudin. Computer-supported cooperative work: History and focus. Computer,
pages 19{26, May 1994.

[96] J. Grudin. Groupware and social dynamics: Eight challenges for developers. Comm.
ACM, 37(1):93{105, Jan. 1994.

[97] R. Guerraoui and R. Schiper. Total order multicast to multiple groups. In Proc. 17th
Int. Conf.on Distributed Computing Systems, pages 578{585, Baltimore, MD, May
1997. IEEE.

158

[98] J. A. Gulla and O. I. Lindland. Modeling cooperative work for work
ow management.
In Proc. Advanced Information Systems Engineering. 6th International Conference,
CAiSE '94, pages 53{65, Utrecht, Netherlands, June 1994. Springer-Verlag, Berlin,
Germany.

[99] C. Gutwin and S. Greenberg. Support for group awareness in real-time desktop
conferences. In Proc. of the Second New Zealand Computer Science Research Students'
Conference, Univ. of Waikato, Hamilton, New Zealand, Apr. 1995.

[100] H. Guyennet, J.-C. Lapayre, and M. Trehel. Distributed shared memory layer for
cooperative work applications. In Proc. 22nd Annual Conference on Local Computer
Networks., pages 72{78, Minneapolis, MN, Nov. 1997. IEEE.

[101] M. Handley and V. Jacobson. Session Announcement Protocol. Internet Draft draft-
ietf-mmusic-sap-v2-03.txt, November 1997.

[102] M. Handley and V. Jacobson. SDP: Session Description Protocol. RFC 2327, April
1998.

[103] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg. SIP: Session Initiation
Protocol. RFC 2543, March 1999.

[104] M. Handley, I. Wakeman, and J. Crowcroft. The Conference Control Channel Protocol
(CCCP): A scalable base for building conference control applications. In Proc. ACM
SIGCOMM, pages 275{287, Cambridge, MA, Aug./Sep. 1995.

[105] B. Hayes-Roth. A blackboard architecture for control. Arti�cial Intelligence,
26(3):251{321, July 1985.

[106] S. Hayne, M. Pendergast, and S. Greenberg. Implementing gesturing with cursors in
group support systems. Journal of Management Information Systems, 10(3):43{61,
Winter 1993-94.

[107] V. Hilt and W. Geyer. A model for collaborative services in distributed learning
environments. In Proc. Interactive Distributed Multimedia Systems and Telecommu-
nication Services (IDMS), pages 364{375, Darmstadt, Germany, Sept. 1997.

[108] T. Hodes, M. Newman, S. McCanne, R. H. Katz, and J. Landay. Shared remote
control of a video conferencing application: Motivation, design, and implementation.
In Proc. Multimedia Computing and Networking, pages 17{28, San Jose, CA, Jan.
1999. SPIE.

[109] A. W. Holt. Diplans: A new language for the study and implementation of coordina-
tion. ACM Trans. on OÆce Information Systems, 6(2):109{125, Apr. 1988.

[110] P. M. Hubbard. Collision detection for interactive graphics applications. IEEE Trans.
on Visualization and Computer Graphics, 1(3):218{30, Sept. 1995.

[111] P. H. Hughes. Going o� the rails: Understanding con
ict in practice. In S. Easterbrook
(Ed.) - CSCW: Cooperation or Con
ict?, pages 161{169. Springer, 1993.

159

[112] C. Huitema. Routing in the Internet. Prentice Hall, Englewood Cli�s, NJ, 1995.

[113] E. A. Isaacs, T. Morris, T. K. Rodriguez, and J. C. Tang. A comparison of face-to-face
and distributed presentations. In Proc. ACM CHI, Denver, CO, May 1995.

[114] E. A. Isaacs and J. C. Tang. Why do users like video? Studies of multimedia-supported
collaboration. Computer Supported Cooperative Work (CSCW), 1(3):163{196, 1993.

[115] E. A. Isaacs and J. C. Tang. What video can and cannot do for collaboration: a case
study. Multimedia Systems J., 2(2):63{73, Aug. 1994.

[116] H. Ishii, M. Kobayashi, and J. Grudin. Integration of inter-personal space and shared
workspace: ClearBoard design and experiments. In Proc. CSCW'92, pages 33{42,
Nov. 1992.

[117] H. Ishii and N. Miyake. Toward an open shared workspace: Computer and video fusion
approach of TeamWorkStation. Comm. of the ACM - Special Issue on Collaborative
Computing, 34(12):36{50, Dec. 1991.

[118] X. Jia. A total ordering multicast protocol using propagation trees. IEEE Trans.
Parallel and Distrib. Sys., 6(6):617{627, June 1995.

[119] Y.-J. Joung and S. A. Smolka. A comprehensive study of the complexity of multiparty
interaction. J. of the ACM, 43(1):75{115, Jan. 1996.

[120] D. A. Henderson Jr. and S. K. Card. Rooms: The use of multiple virtual workspaces to
reduce space contention in a window-based graphical user interface. In D. Marca and
G. Bock (Eds.) - Groupware: Software for Computer-Supported Cooperative Work,
pages 283{315. IEEE Comp. Soc. Press, 1992.

[121] U. Fritzke Jr., P. Ingels, A. Mostefaoui, and M. Raynal. Fault-tolerant total order mul-
ticast to asynchronous groups. In Proc. 17th IEEE Sympos. on Reliable Distributed.
Sys., pages 228{234, West Lafayette, IN, Oct. 1998. IEEE.

[122] M. F. Kaashoek, A. S. Tanenbaum, S. F. Hummel, and H. E. Bal. An eÆcient reliable
broadcast protocol. Operating Systems Review, 23(4):5{19, Oct. 1989.

[123] T. Kamita, S. Ichimura, K. Okada, and Y. Matsushita. A database architecture and
version control for group work. In Proc. IEEE 27th Hawaii Int. Conf. on System
Sciences, volume III, pages 438{447, Wailea, HI, USA, Jan. 1994.

[124] N. Kausar and J. Crowcroft. End-to-end reliable multicast transport protocol require-
ments for collaborative multimedia systems. In Proc. 17th IEEE Symp. on Reliable
Distributed Systems, pages 425{430, West Lafayette, IN, Oct. 1998. IEEE.

[125] L. Kleinholz and M. Ohly. Supporting cooperative medicine: the BERMED project.
IEEE Multimedia, 1(4):44{53, Winter 1994.

[126] R. Kling. Cooperation, coordination and control in computer-supported work. Com-
mun. of the ACM, 34(12):83{88, Dec. 1991.

160

[127] R. T. Kouzes, J. D. Myers, and W. A. Wulf. Collaboratories: doing science on the
Internet. Computer, 29(8):40{46, Aug. 1996.

[128] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Comm.
ACM, 21(7):558{565, July 1978.

[129] L. Lamport. The mutual exclusion problem: Part II { statement and solutions. J.
ACM, 33(2):327{348, Apr. 1986.

[130] B. Lampson. Protection. Proc. 5th Princeton Conf. on Information Sciences and
Systems, 8(1):18{24, Jan. 1974.

[131] K. A. Lantz. An experiment in integrated multimedia conferencing. In Computer
Supported Cooperative Work: A Book of Readings, pages 533{556. Morgan-Kaufman,
1988.

[132] J. Larrue and A. Trognon. Organization of turn-taking and mechanisms for turn-
taking repairs in a chaired meeting. J. of Pragmatics, 19(2):177{196, Feb. 1993.

[133] J. C. Lauwers and K. A. Lantz. Collaboration awareness in support of collaboration
transparency: Requirements for the next generation of shared window systems. In
Proc. SIGCHI, pages 303{311, Seattle, WA, Apr. 1990.

[134] K.-C. Lee, W. H. Mans�eld Jr., and A. P. Sheth. A framework of controlling cooper-
ative agents. IEEE Computer, pages 8{16, July 1993.

[135] B. N. Levine and J. J. Garcia-Luna-Aceves. A comparison of known classes of reliable
multicast protocols. In Proc. IEEE Int. Conf. on Network Protocols, pages 112{21,
Columbus, OH, Oct. 1996.

[136] B. N. Levine and J. J. Garcia-Luna-Aceves. Improving Internet multicast with routing
labels. In Proc. IEEE Int. Conf. on Network Protocols, pages 241{250, Atlanta, GA,
Oct. 1997.

[137] B. N. Levine, D. Lavo, and J. J. Garcia-Luna-Aceves. The case for reliable concur-
rent multicasting using shared ack trees. In Proc. ACM Multimedia, pages 365{376,
Boston, MA, Nov. 1996.

[138] S. C. Levinson. Pragmatics. Textbooks in Linguistics. Cambridge University Press,
Cambridge, UK, 1983.

[139] W. Liao and V. O. Li. Synchronization of distributed multimedia systems with user
interaction. Multimedia Systems, 6(3):196{205, May 1998.

[140] J. Liebeherr and B. S. Sethi. A scalable control topology for multicast communication.
In Proc. IEEE Infocom, San Francisco, Mar./Apr. 1998.

[141] T. Little and A. Ghafoor. Synchronization and storage models for multimedia objects.
IEEE J. on Sel. Areas in Comm., 8(3):413{427, Apr. 1990.

161

[142] A. Lux, P. de Greef, F. Bomarius, and D. Steiner. A generic framework for human
computer cooperation. In Proc. IEEE Int. Conf. on Intelligence and Cooperative
information Systems, pages 89{97, Rotterdam, Netherlands, May 1993.

[143] M. R. Macedonia and D. P. Brutzman. MBone provides audio and video across the
Internet. Computer, 27(4):30{36, Apr. 1994.

[144] P. S. Malm. The unOÆcial Yellow Pages of CSCW - Groupware, Prototypes and
Projects. www11.informatik.tu-muenchen.de/cscw/yp/, Jan. 1994.

[145] T. W. Malone and K. Crowston. The interdisciplinary study of coordination. ACM
Computing Surveys, 26(1):87{119, March 1994.

[146] R. Malpani and L. Rowe. Floor control for large MBone seminars. In Proc. ACM
Multimedia, pages 155{163, Seattle, WA, Nov. 1997.

[147] M. M. Mantei, R. M. Baecker, A. J. Sellen, W. A. S. Buxton, T. Milligan, and
B. Wellman. Experiences in the use of a media space. In Proc. CHI'91 - Human
Factors in Computing Systems. Reaching Through Technology, pages 203{208, New
Orleans, LA, Apr./May 1991.

[148] E. Mayer. An evaluation framework for multicast ordering protocols. In Proc. SIG-
COMM, Computer Communication Review, pages 177{187, Baltimore, MD, Oct.
1992. ACM.

[149] S. McCanne. Scalable multimedia communication with Internet multicast, light-
weight sessions, and the MBone. Technical Report CSD-98-1002, Computer Science
Division, U.C. Berkeley, Berkeley, CA, July 1998.

[150] S. McCanne and V. Jacobson. vic: A
exible framework for packet video. In Proc.
ACM Multimedia, pages 511{522, San Francisco, Nov. 1995.

[151] A. McKinlay, R. Procter, O. Masting, R. Woodburn, and J. Arnott. Studies of turn-
taking in computer-mediated communications. Interacting with Computers, 6(2):151{
171, June 1994.

[152] C. D. Miller and R. W. Clouse. Technology-based distance learning: present and
future directions in business and education. J. of Educational Technology Systems,
22(3):191{204, 1993-1994.

[153] K. Minsoon, H. Sungjune, J. Sangjin, H. Sunyoung, et al. Scalable and reliable
synchronous collaboration environment on CORBA using WWW. In Proc. High-
Assurance Engineering Workshop, Washington, DC, Aug. 1997. IEEE.

[154] J. F. Nash. The bargaining problem. Econometrica, 28:155{62, 1950.

[155] S. Navaratnam, S. Chanson, and G. Neufeld. Reliable group communication in dis-
tributed systems. In Proc. 8th Int. Conf. on Distributed Computing Systems, pages
439{446, San Jose, CA, June 1988. IEEE.

162

[156] L. Navarro, W. Prinz, and T. Rodden. Towards open CSCW systems. In Proc.
IEEE 3rd Workshop on Future Trends of Distributed Computing Systems, pages 4{
10, Taipei, Taiwan, Apr. 1992.

[157] M. L. Neilsen and M. Mizuno. Coterie join algorithm. IEEE Trans. on Parallel and
Distributed Systems, 3(5):582{590, Sept. 1992.

[158] J. M. Ng, H. H. S. Ip, and P. H. H. Tsang. A distributed multimedia conferencing
system. In Proc. IEEE TENCON, pages 57{60, New York, NY, 1993.

[159] T. P. Ng. Ordered broadcasts for large applications. In Proc. IEEE 10th Symp.
Reliable Dist. Sys., pages 188{197, Pisa, Italy, Sep. 1991.

[160] D. G. Novick and J. Walpole. Enhancing the eÆciency of multiparty interaction
through computer mediation. Interacting with computers, 2(2):227{246, Aug. 1990.

[161] J. F. Nunamaker. Collaborative computing: The next millennium. Computer,
32(9):66{71, Sept. 1999.

[162] K. Obraczka. Multicast transport protocols: a survey and taxonomy. IEEE Commu-
nications Magazine, 36(1):94{102, Jan. 1998.

[163] B. O'Conaill, S. Whittaker, and S. Wilbur. Conversation over video conferences: An
evaluation of the spoken aspects of video-mediated communication. Human-Computer
Interaction, 8(4):389{428, 1993.

[164] J. Oikarinen and D. Reed. Internet Relay Chat protocol. RFC 1459, May 1993.

[165] M. H. Olson and S. A. Bly. The Portland experience: a report on a distributed
research group. Int. J. of Man-Machine Studies, 34(2):211{228, Feb.. 1991.

[166] J. Ott, D. Kutscher, and C. Bormann. Capability description for group cooperation.
Internet Draft draft-ott-mmusic-cap-00.txt, June 1999.

[167] J. Ott, C. Perkins, and D. Kutscher. Requirements for local conference control.
Internet Draft draft-ott-mmusic-mbus-req-00.txt, June 1999.

[168] H.-G. Pagendarm and B. Walter. A prototype of a cooperative visualization workplace
for the aerodynamicist. In Proc. Eurographics, volume 12, No. 3, pages 485{508, 1993.

[169] A. Pang, C. Wittenbrink, and T. Goodman. CSpray: A collaborative scienti�c visu-
alization application. In Proc. IS&T SPIE Multimedia Computing and Networking,
pages 317{326, San Jose, CA, Feb. 1995.

[170] F. Panzieri and M. Roccetti. Synchronization support and group-membership services
for reliable distributed multimedia applications. Multimedia Systems, 5(1):1{22, Jan.
1997.

[171] V. L. Patel, D. R. Kaufman, V. G. Allen, E. H. Shortli�e, J. J. Cimino, and R. A.
Greenes. Toward a framework for computer-mediated collaborative design in medical
informatics. Methods of Information in Medicine, 38(3):158{176, Sep. 1999.

163

[172] J. F. Patterson and W. S. Meeks. Rendezvous: An architecture for synchronous
multiuser applications. In Proc. ACM CSCW, pages 317{327. ACM Press, New York,
Aug. 1990.

[173] S. Paul, K. K. Sabnani, J. C.-H. Lin, and S. Bhattacharyya. Reliable multicast
transport protocol (RMTP). IEEE J. on Sel. Areas in Comm., 15(3):407{421, April
1997.

[174] M. O. Pendergast. Multicast channels for collaborative applications: Design and
performance evaluation. Computer Communication Review, 23(2):25{38, April 1993.

[175] A. Poggio, J. J. Garcia-Luna-Aceves, E. J. Craighill, D. Moran, L. Aguilar, D. Wor-
thington, and J. Hight. CCWS: A computer-based multimedia information system.
IEEE Computer, 18(10):92{103, Oct. 1985.

[176] A. Prakash and M. J. Knister. A framework for undoing actions in collaborative
systems. ACM Trans. Computer-Human Interaction, 1(4):295{330, Dec. 1994.

[177] M. O. Rabin. The choice coordination problem. Acta Informatica, 17:121{34, 1982.

[178] B. Rajagopalan. Consensus and control in wide-area group communication. Technical
report, AT&T Bell Laboratories, Holmdel, NJ 07733-3030, Oct. 1993.

[179] B. Rajagopalan and P. K. McKinley. A token-based protocol for reliable, ordered
multicast communication. In Proc. of the 8th Symposium on Reliable Distributed
Systems, pages 84{93, Seattle, WA, Oct. 1989.

[180] S. Rajan, P. V. Rangan, and H. M. Vin. A formal basis for structured multimedia
collaboration. In Proc. 2nd IEEE Conf. on Multimedia Computing and Systems,
Wash., D.C., May 1995.

[181] P. V. Rangan and H. M. Vin. Multimedia collaboration as a universal paradigm
for collaboration. In Multimedia - Principles, Systems and Applications, pages 3{15.
Springer-Verlag, Apr. 1991.

[182] K. Raymond. A tree-based algorithm for distributed mutual exclusion. ACM Trans.
on Comp. Sys., 7(1):61{77, Feb. 1989.

[183] W. Reinhard, J. Schweitzer, and G. V�olksen. CSCW tools: Concepts and architec-
tures. Computer, pages 28{36, May 1994.

[184] E. Rennison. Personalized galaxies of information. In Proc. CHI'95, Denver, CO,
May 1995. ACM SIGCHI.

[185] H. M. Robert. Robert's rules of order. Bantam Books, Toronto; New York, 1986.

[186] L. Rodrigues, H. Fonseca, and P. Verissimo. Totally ordered multicast in large-scale
systems. In Proc. of the 16th Int. Conf. on Distributed Computing Systems, pages
503{510, Hong Kong, May 1996. IEEE.

164

[187] L. Rodrigues, R. R. Guerraoui, and A. Schiper. Scalable atomic multicast. In Proc.
7th Int. Conf. on Computer Comm. and Networks, pages 840{847, Lafayette, LA,
Oct. 1998. IEEE.

[188] M. Roseman and S. Greenberg. Groupkit: A groupware toolkit for building real-time
conferencing applications. In Proc. of the ACM 1992 Conf. on Computer-Supported
Cooperative Work, pages 43{50, Nov. 1992.

[189] E. C. Rosen, T. R. Haining, D. D. E. Long, P. E. Mantey, and C. M. Wittenbrink.
REINAS: a real-time system for managing environmental data. Int. Journal of Soft-
ware Engineering and Knowledge Engineering, 8(1):35{53, March 1998.

[190] J. S. Rosenschein and G. Zlotkin. Rules of Encounter - Designing Conventions for
Automated Negotiation among Computers. The MIT Press, Cambridge, MA, 1994.

[191] H. Sacks, E. A. Schleglo�, and G. Je�erson. A simplest systematics for the organiza-
tion of turn-taking for conversations. Language, 50(4):696{735, 1974.

[192] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design.
ACM Trans. on Comp. Sys., 2(4):277{288, Nov. 1984.

[193] R. S. Sandhu and E. J. Coyne. Role-based access control models. Computer, 29(2):38{
47, Feb. 1996.

[194] V. Saraswat, J. Malcom, and C. Apple. The Presence Protocol. Internet Draft, Aug.
1999.

[195] K. Schmidt and C. Simone. Coordination mechanisms: Towards a conceptual foun-
dation of CSCW systems design. Computer-Supported Cooperative Work, 5(2-3):155{
200, 1996.

[196] E. M. Schooler. The impact of scaling on a multimedia connection architecture.
Multimedia Systems, 1:2{9, 1993.

[197] E. M. Schooler. Conferencing and collaborative computing. Multimedia Systems J.,
4(5):210{225, Oct. 1996.

[198] E. M. Schooler and S. L. Casner. An architecture for multimedia connection manage-
ment. In IEEE 4th COMSOC Int. Workshop on Multimedia Comm., pages 271{274,
Apr. 1992.

[199] I. Schubert, D. Sisalem, and H. Schulzrinne. A
oor control application for light-
weight multicast conferences. In Proceedings of ICT'98 - International Conference on
Telecommunications, pages 130{134, Thessaloniki, Greece, June 1998.

[200] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A transport protocol
for real-time applications. Internet Engineering Task Force - Internet Draft, Mar.
1995.

[201] A. J. Sellen. Remote conversations: The e�ects of mediating talk with technology.
Human-Computer Interaction, 10(4):401{444, 1995.

165

[202] H. Shen and P. Dewan. Access control for collaborative environments. In Proc. ACM
CSCW, pages 51{58, Nov. 1992.

[203] S. Shenker, A. Weinrib, and E. Schooler. Managing shared ephemeral teleconferencing
state: Policy and mechanism. Internet Draft, Mar. 1995.

[204] S. J. Shenker. Making greed work: A game-theoretic analysis of switch service disci-
plines. IEEE Trans. on Networking, 3(6):819{831, Dec. 1995.

[205] S.-P. Shieh and F.-S. Ho. A comment on 'A total ordering multicast protocol using
propagation trees'. IEEE Trans. Parallel. and Distrib. Sys., 8(10):1084, Oct. 1997.

[206] S. Shirmohammadi, J. C. De Oliveira, and N. D. Georganas. Applet-based telecol-
laboration: a network-centric approach. IEEE Multimedia J., 5(2):64{73, April-June
1998.

[207] S. Singh and J. F. Kurose. Electing \good" leaders. J. of Parallel and Distributed
Computing, 21(2):184{201, May 1994.

[208] R. G. Smith. The ContractNet protocol: High-level communication and control in a
distributed problem solver. IEEE Trans. on Computers, 29(12):1104{1113, Dec. 1980.

[209] P. K. Srimani and S. R. Das. Distributed Mutual Exclusion Algorithms. IEEE Comp.
Society Press, Los Alamitos, CA, 1992.

[210] K. Srinivas, R. Reddy, et al. MONET: A multimedia system for conferencing and
application sharing in distributed systems. Technical report, Concurrent Engineering
Research Center, West Virginia University, Morgantown, WV, Feb. 1992. CERC-TN-
RN-91-009.

[211] M. Ste�k, G. Foster, D. G. Brobrow, K. Kahn, S. Lanning, and L. Suchman. Beyond
the chalkboard: Computer support for collaboration and problem solving in meetings.
Comm. ACM, 30(1):32{47, Jan. 1987.

[212] R. Steinmetz. Synchronization properties in multimedia systems. IEEE J. on Sel.
Areas in Comm., 8(3):401{411, April 1990.

[213] R. Steinmetz and K. Nahrstedt. Multimedia: Computing, Communication, and Ap-
plications. Prentice Hall, Upper Saddle River, NJ, 1995.

[214] W. T. Strayer, B. Dempsey, and A. Weaver. XTP: The Xpress Transfer Protocol.
Addison Wesley, 1992.

[215] W. Su, J. GriÆoen, and R. Yavatkar. Integrating concast and multicast communi-
cation models. In Proc. Internet Routing and Quality of Service, vol. 3529, pages
143{153, Boston, MA, Nov. 1998. SPIE.

[216] C. Szyperski and G. Ventre. A characterization of multi-party interactive multimedia
applications. Technical Report TR-93-006, International Computer Science Institute,
Berkeley, Feb. 1993.

166

[217] H. Takagi and L. Kleinrock. Output processes in contention packet broadcasting
systems. IEEE Trans. Commun., COM 33(11):1191{1199, 1985.

[218] G. Texier and N. Plouzeau. Automatic management of sessions in shared spaces. In
Proc. Int. Conf. on Parallel and Distributed Processing Techniques and Applications
(PDPTA'99), pages 67{73, Las Vegas, NV, June/July 1999.

[219] R. Tijdeman. The chairman assignment problem. Discrete Mathematics, 32(3):323{
330, Dec. 1980.

[220] I. Tou, S. Berson, G. Estrin, Y. Eterovic, and E. Wu. Prototyping synchronous group
applications. Computer, pages 48{56, May 1994.

[221] M. Trehel. Synchronization of dialogue requests in cooperative distance learning.
Personal Communication, 1999.

[222] R. H. Trigg, L. A. Suchman, and F. G. Halasz. Supporting collaboration in notecards.
In Groupware: Software for Computer-Suopported Cooperative Work, pages 394{403.
D. Marca and G. Bock (Eds.), 1986.

[223] D. Trossen and A. Katona. Conference protocol evaluation: a load model to develop
conference control protocols. In Proc. Multimedia Systems and Applications Vol. 3528,
pages 295{306, Boston, MA, Nov. 1998. SPIE - Int. Soc. Opt. Eng.

[224] International Telecommunication Union. Recommendation T.120 on data protocols
for multimedia conferencing. http://www.itu.int, July 1996.

[225] H. M. Vin and P. V. Rangan. System support for computer mediated multimedia
collaboration. In Proc. ACM CSCW, pages 203{209, Nov. 1992.

[226] H. M. Vin, P. V. Rangan, and S. Ramanathan. Hierarchical conferencing architectures
for inter-group multimedia collaboration. In ACM SIGOIS Bull., Proc. Org. Comp.
Sys., pages 43{54, Atlanta, GA, Nov 1991.

[227] H. M. Vin, P. T. Zellweger, D. C. Swinehart, and P. V. Rangan. Multimedia confer-
encing in the Etherphone environment. Computer, 24(10):69{79, Oct. 1991.

[228] C. A. Waldspurger and W. E. Weihl. Lottery scheduling: Flexible proportional-share
resource management. In Proc. First USENIX Symp. on Operating Systems Design
and Implementation, pages 1{11, Monterey, CA, Nov. 1994.

[229] M. B. Walker. Smooth transitions in conversational turn-taking: Implications for
theory. J. of Psychology, 110(1):31{37, Jan. 1982.

[230] K. Watabe, S. Sakata, K. Maeno, H. Fukuoka, and K. Marbara. Distributed multi-
party desktop conferencing system: MERMAID. In Proc. ACM CSCW, pages 27{38,
Los Angeles, CA, Oct. 1990.

[231] M. Weiser. Some computer science issues in ubiquitous computing. Communications
of the ACM, 36(7):74{84, July 1993.

167

[232] P. Wellner. Interactive with paper on the DigitalDesk. Comm. of the ACM - Special
Issue on Computer Augmented Environments, 36, No. 7:86{97, July 1993.

[233] B. Whetten, T. Montgomery, and S. Kaplan. A high performance totally ordered
multicast protocol. In Theory and Practice in Distributed Systems, LNCS 938, pages
33{57, Berlin, Sept. 1994. Springer.

[234] T. Winograd. A language/action perspective on the design of cooperative work.
Human-Computer Interaction, 3(1):3{30, 1987/88.

[235] K. H. Wolf, K. Froitzheim, and P. Schulthess. Multimedia application sharing in a
heterogeneous environment. In Proc. ACM Multimedia, pages 57{64, San Francisco,
CA, Nov. 1995.

[236] R. Yavatkar and J. GriÆoen. Clique: a toolkit for group communication using IP
multicast. In First Int. Workshop on Services in Distributed and Networked Environ-
ments, pages 132{138, Prague, Czech Republic, June 1994. IEEE.

[237] R. Yavatkar, J. GriÆoen, and M. Sudan. A reliable dissemination protocol for in-
teractive collaborative applications. In Proc. ACM Multimedia, pages 333{344, San
Francisco, Nov. 1995.

[238] R. Yavatkar and K. Lakshman. Communication support for distributed collaborative
applications. Multimedia Systems J., 2(2):74{88, Aug. 1994.

[239] O. ZeinEldine and H. Abdel-Wahab. Multicasting in interconnected networks. In
Proc. Sympos. Comp. and Comm., pages 313{319, Alexandria, Egypt, June 1995.
IEEE.

[240] C. Ziegler, G. Weiss, and E. Friedman. Implementation mechanisms for packet
switched voice conferencing. IEEE J. on Sel. Areas in Comm., 7(5):698{706, June
1989.

